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WHAT IS REGRESSION ANALYSIS?

WHAT IS REGRESSION 
ANALYSIS?

• What is regression analysis?

• What are the two main purposes of 
regression analysis?

What is regression analysis?

• A type of data 
analysis.

• Using one or more 
variables (x) to explain 
another variable (y).

• Fitting equations or 
models to noisy data—
data that do not lie 
exactly on the curve. x

y

Ultimate purposes of regression

1. Develop a mathematical model that uses 
available data (x) to predict y  as closely 
as possible.  Close correlation is good 
enough!

2. Measure the causal effect of  x  on y.

Examples of prediction

• Using individuals’ health status (x) to 
predict their health insurance claims (y).

• Using individuals’ age, sex, driving record, 
etc. (x) to predict whether they will have an 
accident next year (y).

• Using characteristics of banks (x) to predict 
whether they will fail (y).

Successful prediction

• Model predicted values should be close to 
actual values.

• At a minimum, model should “explain” well 
the  y  data used to develop the model.

• In addition, hopefully, the model should 
predict well outside the sample, too.

Examples of causal inference

• Measuring the effect of a job training 
program (x) on a typical worker’s earnings 
(y).

• Measuring the effect of hiring more police 
officers (x) on the crime rate (y).

• Measuring the effect of user fees at national 
parks (x) on the number of visitors (y).
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WHAT IS REGRESSION ANALYSIS?

Successful causal inference

• Mere correlation  ≠ causality.

• For causal inference, must measure the 
effect of  x  on  y,  ceteris paribus.

• That requires measuring what happens to  y  
when  x  changes, while holding constant 
other factors that might influence  y.

The challenge of holding other 
factors constant

• Sometimes data are available on 
experiments where other factors are held 
constant through randomization.
• Example:  RAND Health Insurance Experiment 

(1974-1977).

• But usually we only have nonexperimental 
(or observational) data.

Perils of causal inference with 
nonexperimental data: example 1

• Suppose we want to measure the effect of a 
job training program on earnings of 
participants.

• So we collect data on the change in earnings 
of people who volunteered for the program 
and the change in earnings of people who 
did not.

Perils of causal inference with 
nonexperimental data: example 1

(cont’d)
• Our goal is to measure the ceteris paribus

effect—that is, holding other factors 
constant.

• We want to know how much higher a 
person’s earnings are as a result of the 
program, holding constant differences in 
ability, attitude, motivation, etc. that also 
affect earnings.

Perils of causal inference with 
nonexperimental data: example 1 

(cont’d)
• But perhaps those who 

volunteer are more 
motivated to increase 
their earnings.

E
ar

ni
ng

s 
ch

an
ge

Non-
participants

Participants

Sample

Perils of causal inference with 
nonexperimental data: example 

1(cont’d)
• If so, the relationship 

between training and 
earnings in our dataset 
might be stronger than 
the general population.

• We have not held 
motivation constant!

E
ar

ni
ng

s 
ch

an
ge

Non-
participants

Participants

Sample

Population
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WHAT IS REGRESSION ANALYSIS?

Perils of causal inference with 
nonexperimental data: example 2

• Suppose we want to measure the effect of 
hiring more police officers on crime.

• So we collect data from different cities on 
crime rates and on the number of police 
officers per 1000 population.

Perils of causal inference with 
nonexperimental data: example 2 

(cont’d)
• Our goal is to measure the ceteris paribus

effect—that is, holding everything else 
constant.

• We want to know how much lower a city’s 
crime rate would be as a result of hiring 
more police, holding constant differences 
poverty rates, average age of the population, 
etc. that also affect the crime rate.

Perils of causal inference with 
nonexperimental data: example 2

(cont’d)
• But perhaps cities with 

high crime rates (for 
whatever reason) 
respond by increasing 
the number of police 
officers.

• Then the data might be 
scattered as shown.

Police officers per
population

C
ri

m
e 

ra
te

Perils of causal inference with 
nonexperimental data: example 2 

(cont’d)
• Then the relationship 

between police 
officers and crime in 
our data might be the 
opposite of the true 
ceteris paribus
relationship!

• We have not held 
other factors constant. Police officers per

population
C

ri
m

e 
ra

te

Conclusions

• The main purposes of regression analysis 
are
1. _________________________.
2. _________________________.

• Successful predictions are close to the 
actual values of  y.

• Successful causal inference holds constant 
other factors that affect  y.
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DATA SETS

DATA SETS

•What four forms do data sets usually 
take?

Structure of economic datasets

• Datum = a single number, like 47.5.  Plural 
of datum is_________.

• Dataset = array of data to be analyzed.

• Datasets are often arranged so that the rows 
are _________________ and the columns 
are _________________.

• Datasets differ in how observations are 
related to each other.

Types of datasets

1. Cross-sections.

2. Time series.

3. Pooled cross-sections.

4. Panels.

1. Cross-sectional datasets

• All observations collected at roughly the same 
point in time.

• Observations can be people, firms, industries, 
cities, countries, etc.

IncomeEducationAgeNameObs. #

$38,84512 years34B. Smith1

$65,15016 years47C. Valdez2

$45,27518 years24J. Huang3

Commonly used 
cross-section datasets

• Household surveys such as U.S. Decennial 
Census, American Community Survey, 
Current Population Survey, Consumer 
Expenditure Survey, Survey of Consumer 
Finances.*

• Point-in-time data sets on firms, products, 
U.S. states, etc.

* First three are available free at ipums.org .

Cross-sectional datasets are 
easiest to analyze

• Often we can plausibly assume that 
observations are a _____________ sample
from some larger population.

• Each new observation is a fresh draw from 
the population, unrelated to other 
observations.

• Observations are thus _________________.
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2. Time-series datasets

• Same individual (person, firm, country) is 
observed repeatedly over time.

• Frequency might be weekly, monthly, quarterly, 
or annual.

GR RGDP 
per capita

Inflation 
(CPI)

Unempl. 
rate

YearObs. #

2.53.44.020001

-0.62.84.720012

1.11.65.820023

Commonly-used 
time-series datasets

• Macroeconomic time series (GDP, 
unemployment, inflation, interest rates, 
etc.)*

• Currency exchange rates.*

• Stock, bond, and commodity prices.

* Available free at fred.stlouisfed.org.

Patterns in time-series

• Time-series data often show ____________ 
patterns (unless the data are annual).
• Electricity use peaks in July or August every 

year most places.
• Unemployment peaks in June most years.

• Time series data often show long-run 
____________ (usually upward).
• GDP, employment, and the price level all trend 

upward.

Time series datasets are harder to 
analyze

• Time-series observations are not usually 
independent over time.

• Example:  If GDP is above trend in one 
quarter, there is a good chance GDP will be 
__________ trend in the next quarter, too.

• Each new observation is not a fresh draw 
from the population.  Time-series data sets 
cannot be considered __________ samples.

3. Pooled cross-section datasets

• Several cross-section datasets are combined 
(or pooled).

• Example:  Surveys from several different 
years, covering different individuals, might 
be combined into one dataset.

• Observations in the same year might be 
related to each other, but not to observations 
in another year.

What a pooled dataset looks like

IncomeAgeNameYearObs. #

$38,84534B. Smith20001

$65,15047C. Valdez20002

$45,27524J. Huang20003

$55,25065P. Abdul20024

$22,75019A. O’Toole20025

$44,50029H. Schmidt20026
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Why pooled datasets can be 
useful

• Can include _________ observations than a 
single cross-section.  The more 
observations, the more precise are statistical 
estimates.

• Can estimate relationships _________ each 
cross section, and compare to see whether 
relationship has changed over time.

4. Panel (or longitudinal) datasets

• Same cross-section is followed over time.

• Same individuals appear, period after 
period.

• Example:  A few government surveys 
collect information from the same people 
month after month.

What a panel dataset looks like

IncomeAgeNameYearObs. #

$38,84534B. Smith20001

$40,15035B. Smith20012

$42,75036B. Smith20023

$65,15047C. Valdez20004

$68,27548C. Valdez20015

$70,15549C. Valdez20026

Commonly-used panel data sets

• U.S. Census data (states, cities, counties).

• Financial data sets like Compustat (firms).

• World Economic Outlook, maintained by 
International Monetary Fund (countries).

• National Longitudinal Surveys and Panel 
Study of Income Dynamics (households).

Why panel datasets can be useful

• Sometimes can get better ceteris paribus
measures.

• Extraneous differences between individuals 
(if constant over time) can be removed by 
focusing on changes over time in the same 
individual.

Conclusions

• A ____________________ dataset observes many 
individuals (persons, firms, states, countries, etc.) 
at one point in time.

• A ____________________ dataset observes one 
individual repeatedly at many points in time.

• A ____________________ dataset combines 
several cross-sections.

• A ____________________dataset observes the 
same set of individuals at different points in time.
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THE SUMMATION OPERATOR

THE SUMMATION 
OPERATOR

•What does the symbol   mean?

•How can it be manipulated?

Meaning of summation symbol
(  )

• All expressions to the right of    should be 
added, over the specified range of the index.

• Formally, 

• Example:  If x1=3, x2=5, x3=6, and x4=8, 
then

Manipulating the summation 
symbol () 

• The summation symbol is just shorthand for 
addition.

• All the properties of addition apply to   , 
including the
• Commutative law (rearranging order of sum)

• Distributive law (taking out common factors)

Taking out a common factor

• A common factor (identical for every term 
in the summation) can be taken outside the 
summation symbol.

• Reason:  “distributive law.”

• Special case--sum of constants:  

Rearranging order of sums

• Addition gives the same answer, no matter 
what order terms are summed in.

• “Commutative law.”

Manipulating double sums
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THE SUMMATION OPERATOR

NOT true, in general

• Example:  Suppose  x1=3, x2=2, x3=4.

NOT true, in general

• Example:  Suppose  x1=3, x2=2, x3=4, and 
y1=1, y2=2, y2=2.

Conclusions

• The summation symbol () is convenient 
shorthand for _______________.

• It has all the usual properties of addition, 
including the ________________ law 
(rearranging the order) and the __________ 
law (taking out common factors).
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DERIVATIVES OF SUMS

DERIVATIVES OF SUMS

•How can we find the derivative of a 

function with a   symbol?

Rule for derivatives of sums

• From calculus we know that the derivative 
of a sum of functions is the _______ of the 
derivatives:

• Example:

Derivatives of functions with 

• Same rule applies to summation symbol.

• We simply take the derivative term-by-term.

Example 1

• Example 1:

How do we know whether to 
differentiate with respect to  or x?

• If the derivative is to 
be taken with respect 
to x, the operator is 
written as ...

• If the derivative is to 
be taken with respect 
to , the operator is 
written as ...

Example 2

• Example 2:
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DERIVATIVES OF SUMS

Example 3

• Example 3:

More examples

• Example 4:

• Example 5:

Conclusions

• No special formulas are required for taking 
the derivatives of functions containing the 
summation symbol ().

• The derivative of a sum is just the 
______________________ of all the terms.

Part 1:  Introduction and review Page 1-10

STAT 170 - Regression and Time Series © 2024  William M. Boal



AVERAGES AND WEIGHTS

AVERAGES AND WEIGHTS

•How can averages be defined using 
the symbol   ?
•What properties do averages have?

Simple average 
(or “sample mean”)

• Definition:

• Example:  Suppose x1=5, x2=6, and x3=7.

Deviations from sample mean

• Definition:

• Key property of deviations from sample 
mean:

• By contrast, 

Deviations from sample mean

• Definition:

• Key property of deviations from sample 
mean:

• By contrast, 

An algebraic identity

(1)

Another algebraic identity

(2)  
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AVERAGES AND WEIGHTS

What is a weighted sum?

• Each term (say xi) is multiplied by some 
weighting factor (say wi) before adding:

• Example:  Suppose x1=5, x2=6, and x3=7, 
and weights are wi=1/i.  Then

What is a weighted average?

• A weighted sum whose (nonnegative) 
weights alone sum to one:

• Example:  Again suppose x1=5, x2=6, and 
x3=7.  Now suppose weights are w1=1/4, 
w2=1/4, and w3=1/2.  Then

Conclusions

• A simple average (or sample mean) can be 
defined as (1/n) times the sum.

• The sum of deviations from the sample 
mean is necessarily ______________.

• _________________ multiply each term by 
some weight, before summing.

• ____________________ have nonnegative 
weights that sum to one.
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DEFINITION OF LEAST-SQUARES

DEFINITION OF LEAST-
SQUARES

• What is the “least-squares principle” for 
fitting a line to data?

• What are the formulas for the least-
squares estimators of the intercept and 
slope?

Linear relationships

• Suppose x and y have 
a linear relationship:  
y = 1 + 2 x.

• 1 = ____________

• 2 = ____________

x

y

Meaning of slope

• If x increases by a small amount, then y 
changes by 2 times that amount.

• Example:  Suppose 2 = 2 and x increases 
by 0.4.  Then y increases by 
(approximately) _______.

Measuring relationships

• Suppose we have data 
on xi and yi, for  i = 1 
through  n.

• We believe that x and 
y have a roughly linear 
relationship:  
y = 1 + 2 x.

• How can we estimate 
1 and 2? s

y

Simple example with 3 observations:  
data and scatterplot

YXObs.

741

152

1363

0

5

10

15

3 4 5 6 7

Y

X

Another example:  household data 
on income and food expenditure

Food 
expenditure

Weekly 
income

Household 
no.

Food 
expenditure

Weekly 
income

Household 
no.

107.48564.61152.25258.31

98.48588.31258.32343.12

181.21591.31381.794253

122.23607.314119.9467.54

129.57611.215125.8482.95

92.8463116100.46487.76

117.92659.617121.51496.57

82.1366418100.08519.48

182.28704.219127.75543.39

139.13704.820104.94548.710
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DEFINITION OF LEAST-SQUARES

Scatterplot of household expenditure
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Fitting a line to data

• Economic data rarely 
lie exactly on a 
straight line.

• So we must find a line 
that fits the data 
“best.”

• How to choose the 
“best”-fitting line?

x

y

Deviations from the line

• The “best” line would 
come close to the 
actual data points.

• Suppose we measure 
deviations from the 
line vertically.

x

y

xi

yi

The least-squares principle

• Choose the line that minimizes the sum of 
the squared vertical deviations.

• In other words, find values of 1 and 2 that 
minimize the following objective function:

Minimizing the function

• The least-squares 
objective function is 
quadratic in 1 and 2 .

• Its minimum occurs 
where its slope =
_______________

• Use this fact to solve 
for 1 and 2 .

f(
 1

,
2)

1 or  2

First, find formulas for the slopes (or 
derivatives) of the objective function 

Derivative of  f(1,2)  with respect to  ß1:

Derivative of  f(1,2)  with respect to  ß2:
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DEFINITION OF LEAST-SQUARES

Second, set the derivatives equal 
to zero

• These equations are called the “first-order 
necessary conditions” (FONCs), or 
sometimes “normal equations.”

The least-squares estimators

• These equations can be solved to give the 
least-squares estimators.

• Slope: 𝛽ଶ
 =

∑ ௫ି௫̅
సభ ௬ି௬ത

∑ ௫ି௫̅ మ
సభ

 

• Intercept: 𝛽ଵ
 = 𝑦ത − 𝛽ଶ

 �̅�

where �̅� = sample mean of xi and 𝑦ത = sample 
mean of yi.

Least-squares estimates for the 
simple example

• Here,  �̅� =_____  and  𝑦ത =_____ .

• Slope: 𝛽ଶ
 =

∑ ௫ି௫̅య
సభ ௬ି௬ത

∑ ௫ି௫̅ మయ
సభ

=____.

• Intercept: 𝛽ଵ
 = 𝑦ത − 𝛽ଶ

 �̅� =____ .

Least-squares estimates for the 
household expenditure example

• Here,  �̅� =_________  and  𝑦ത =_________ .

• Slope: 𝛽ଶ
 =

∑ ௫ି௫̅మబ
సభ ௬ି௬ത

∑ ௫ି௫̅ మమబ
సభ

=________.

• Intercept: 𝛽ଵ
 = 𝑦ത − 𝛽ଶ

 �̅� =_________.

Definition of least-squares fitted 
values and residuals

• LS “fitted value” or 
“predicted value” =

• LS “residual” =

x

y

xi

yi

Fitted values for the simple 
example

yixiObs.

1361

742

153

0

5

10

15

3 4 5 6 7

Y

X
Data Fitted values
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Fitted values for the household 
expenditure example

• Y-intercept (1):  12.94

• Slope (2) :  0.18

• Fitted line:

y = __________ + ________ x

Fitted values for the household 
expenditure example:  plot
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Weekly income

Observations

LS fitted

Remark:  LS estimators cannot 
always be calculated

• Note that         cannot 
be calculated if  x 
never varies:  xi = x.

• Reason:

• But this is not a defect 
of LS.  If  x  never 
varies, how can we 
expect to measure its 
impact on y? x

y

_

Remark:  LS fitted line must pass 
through sample means

• The LS fitted line is given by:

• The sample means necessarily lie on the LS 
fitted line:

(Follows from formula for       .)

LS fitted line must pass through 
sample means:  simple example

0

5

10

15

3 4 5 6 7

Y

XY LS fitted

• Here,  �̅� = 5    and  
𝑦ത = 7    .
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d
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Weekly income

Observations

LS fitted

LS fitted line must pass through sample 
means:  household expenditure example

Here,  �̅� = 544.94   and  𝑦ത = 112.30   .
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Conclusions

• One way to fit a line to data is to choose the 
line that minimizes the sum of the
___________________________________. 

• This is called the “____________________
principle.”

• Using calculus, explicit formulas can be 
derived for the least-squares estimators of 
the slope and intercept.
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ALTERNATIVES TO LEAST-SQUARES

ALTERNATIVES TO 
LEAST-SQUARES

•What other principles can be used to 
estimate the intercept and slope?

Least-squares is only one 
approach

• Least-squares 
minimizes the sum of 
the squared
deviations, measured 
vertically:
(yi - [1 + 2xi])2.

• How else could we 
define the “best” fit?

x

y

xi

yi

Alternative objective functions

• Many other criteria for “best fit” are 
possible.  We consider two:
(1) Sum of absolute value of deviations.

(2) Sum of squared deviations measured 
horizontally.

(1) Absolute deviations

• Absolute value of 
deviations are given 
by:
| yi - [1 + 2xi] |.

• Recall the absolute 
value function:

x

y

xi

yi

z

| z |

The least-absolute-deviations 
(LAD) principle

• Minimize the sum of 
the absolute value of 
deviations, measured 
vertically:
| yi - [1 + 2xi] |.

x

y

xi

yi

Minimizing the function

• Objective function is:

• The absolute value 
function has 1 kink.

• Sum of  n  absolute 
values has  ___  kinks.

f(
 1

,
2)

1 or  2
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ALTERNATIVES TO LEAST-SQUARES

Finding LAD estimates of 
1 and 2

• Cannot use calculus because cannot take 
derivative of kinky functions.

• No formulas exist for 1 and 2 .

• Must use trial-and-error (preferably aided 
by computer) to find LAD estimates.

Why LAD is different from LS

• Example:  LAD gives 
less weight to outliers 
(large deviations).

• Here, the sum of 
squared resids (SSR) =
_________.

• The sum of absolute 
deviations (SAD) =
_________. x

y

xi

15

2

5

Why LAD is different from LS
(cont’d)

• Suppose we move the 
fitted line up three 
units, closer to the 
outlier at the top.

• The SSR falls to ___.

• The SAD _________
_________________.

x

y

xi

15

2

5
8

Why LAD is different from LS
(cont’d)

• Conclude:
Compared to LS, 
LAD is less 
responsive to 
observations far from 
the regression line.

x

y

xi

15

2

5
8

(2) Horizontal deviations

• Let xi = 1 + 2yi. 

• 1 = __________

• 2 = __________

x

y

The reverse-least-squares (RLS) 
principle

• Minimize the sum of 
the squared deviations, 
measured horizontally.

• Squared horizontal 
deviations are: 
(xi - [1 + 2yi])2.

x
X

y

xi

yi
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ALTERNATIVES TO LEAST-SQUARES

Minimizing the function

• RLS objective 
function is quadratic in 
α1 and α 2:

• Its minimum occurs 
where its slope =
_______________

f(


1,


2)

1 or  2

Solving for RLS estimates of
1 and 2

• Set zero equal to derivative of f(1,2) with 
respect to 1:

• Set zero equal to derivative of f(1,2) with 
respect to 2:

The RLS estimators

• These equations can be solved to give the 
reverse least-squares estimators:

Remarks

• Note that         cannot be calculated if  y
never varies.

• The sample means necessarily lie on the 
RLS fitted line:

RLS estimators for y-intercept 
and slope (y/x)

• Solve xi = 1 + 2yi

for yi to get:

• RLS Y-intercept 
estimator =

• RLS slope
estimator = x

y

RLS estimators for y-intercept 
and slope (y/x)

• Solve xi = 1 + 2yi

for yi to get:

• RLS Y-intercept 
estimator =

• RLS slope
estimator = x

y

1/2

y / x
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Alternative estimates for the 
simple example

Slope (2) Y-intercept (1)

3-8Ordinary LS

3-5LAD

12-53Reverse LS

Alternative fitted values for the 
simple example

0

5
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3 4 5 6 7

Y

X

Y

LS fitted

LAD fitted

RLS fitted

Alternative estimates for the 
household expenditure example

Slope (2) Y-intercept (1)

0.1812.94Ordinary LS

0.191.99LAD

0.45-132.88Reverse LS

Alternative fitted values for the 
household expenditure example
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Observations
LS fitted
LAD fitted
RLS fitted Y

Other possible objective 
functions

Which principle to use?

• Different objective functions for “best fit” 
lead to different estimates—sometimes very
different estimates (see RLS).

• Which objective function is best?

• Answer depends on why we think the 
data do not lie exactly on the line.
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Data scattered around “true” line

• Perhaps the data are 
randomly scattered 
around a “true” line.

• To model this random 
scattering, and decide 
which principle is 
best, we must first 
review theory of …
_________________
_________________ X

Y

Conclusions

• Reasonable alternative principles can be 
used to define the “best fit” and find 
estimators for the intercept and slope.

• But they sometimes give very ___________ 
answers.

• To decide which principle is best, we must 
model the scattering of data off the “true” 
line using __________________________.
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RANDOM VARIABLES

• What is probability?

• What is a random variable?

• What is the difference between 
discrete and continuous random 
variables?

Probability:  definition

• Relative frequency with which an event 
occurs in repeated trials.

• Examples:
• Flip of fair coin:  probability of “heads” 

= _____

• Toss of fair die:  probability of “1” 
= _____

Properties of probability

• Probabilities must lie between
_______ and _______.

• Probabilities of all possible but mutually 
exclusive outcomes must sum to ______.

Random variable:  definition

• A variable whose value is determined by a 
random process.

• Each value that a random variable can take 
is associated with some probability.

• The sum of all those probabilities = ______.

• Random variables can be discrete or 
continuous. 

Discrete random variable: 
definition

• A random variable that can take only values 
that are separated from each other, such as 
integers.

• These values can be listed.

• Example:  a random variable that can take 
only the values 0, 1, and 2.

• The total probability of all possible values = 
_______.

Discrete random variable:  
examples

• Binary random variables:  Whether a person 
is employed, owns home, belongs to a labor 
union, owns a smartphone.

• Other discrete random variables:  Number 
of children in household, of cars owned, of 
visits paid to doctor in a year.
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Discrete random variable:  
example 1

• Coin toss:  Let X=1 if 
“heads” and X=0 if 
“tails.”

• If a fair coin, then 
Prob{X=1} = _____,
and Prob{X=0} = ___.

0         1

1.00

0.75

0.50

0.25

Probability function

Discrete random variable: 
example 2

• Roll of die:  
Let X = number of 
dots showing. 

• X can take six possible 
values.

• If a fair die, then 
Prob{X=1} = 
= Prob{X=2} = … 
= Prob{X=6} = ____. 0     1     2     3     4     5     6

1.000

0.167

Probability function

Discrete random variable: 
example 3

• Suppose a person is 
selected at random 
from the population.

• Let X = 1 if employed, 
2 if unemployed, 3 if 
out of the labor force 
(not looking for work).

0     1     2     3

1.00

0.75

0.50

0.25

Probability function

Continuous random variable:  
definition

• A random variable that takes a continuous 
range of values on real number line.

• The probability of any particular value is 
essentially _______, but the probability of a 
range can be positive.

• The total probability over the whole real 
line must = ______.

Continuous random variable:  
example 1

• Let X = distance that a 
baseball hit from home 
plate travels before 
touching the ground.

• Probability of any 
particular distance 
(say, 57 ft.  3 1/4 in.) 
is essentially zero.

Probability density 
function

Distance
57’ 3.75”

Continuous random variable:  
example 1 (cont’d)

• But probability of a 
range (say 40-100 ft) 
is positive.

• Probability of range =  
area under probability 
density function.

Probability density 
function

Distance
40’        100’

Prob=0.3
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Continuous random variable: 
applications

• Many variables take so many values that 
they are most conveniently modeled as 
continuous.

• Stock prices.

• Health care spending.

• Insurance claims.

Continuous random variable:  
economic applications

• Microeconomic examples:  quantities and 
prices of electricity, food, steel, 
automobiles.

• Macroeconomic examples:  GDP, money 
supply, price level, employment, currency 
exchange rates.

Cumulative distribution function 
(CDF): definition

• Function showing the probability that a 
random variable takes value less than or 
equal to the argument.

• F(x) = Prob{X<x}.

• F(-infinity) = _______.

• F(infinity) = ________.

• F(x) cannot slope _________.
0     1     2     3     4     5     6    x

CDF for discrete random variable

• For discrete random 
variable, CDF is a step 
function.

• Example:  roll of die, 
six possible values for 
X.  

• F(x) = Prob{X<x} 
jumps up at each of 
these six values.

1

0.167

0

CDF

CDF for continuous random 
variable: example

• For continuous 
random variable, CDF 
is continuous, upward-
sloping.

• F(x) = Prob{X<x) =

CDF
1

0
x

Conclusions

• Probability is the relative __________ with 
which an event occurs in repeated trials.

• A ____________ random variable takes a 
countable number of possible values.

• A ____________ random variable takes a 
continuous range of possible values.

• The ______________ distribution function 
F(x) shows Prob{X<x}.
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JOINT DISTRIBUTIONS

• How can we describe random variables 
that are related to each other?

• What are joint distributions, marginal 
distributions, and conditional 
distributions?

Joint distribution:  definition

• Any two random variables have a joint 
distribution.

• A joint distribution shows the probabilities 
of any particular combination of values the 
random variables may take.

Joint distribution of discrete 
random variables

• Probability associated with some particular 
combination of outcomes of two random 
variables.

• fx,y(x,y) = Prob{X=x and Y=y}.

Joint distribution of discrete 
random variables: example

• For two discrete random variables, joint 
distribution can be displayed as table. 

• Example:  fx,y(1,2) =  Prob{X=1 and Y=2} 
= 0.1 .

Y=1         Y=2           Y=3

X=1           0.2            0.1            0.1

X=2           0.3            0.2            0.1

Joint distribution of continuous 
random variables

• Can be defined by joint density function 
fx,y(x,y).

• Probability of any particular combination is 
essentially zero.  But probability of a range 
is positive.

x

y

Marginal distribution

• In the context of joint distributions, the 
distribution of each individual random 
variable is called its “marginal distribution.”
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Marginal probabilities for 
discrete distributions

• Let pij = fx,y(xi,yi) = Prob{X=xi and Y = yj}.

• Then the marginal probabilities are given by

Marginal probabilities of discrete 
random variables: example

• For joint discrete distribution, marginal 
probabilities are column sums and row 
sums.

Y=1         Y=2           Y=3

X=1           0.2            0.1            0.1

X=2           0.3            0.2            0.1

Marginal Y

Marginal X

Marginal density functions for 
continuous distributions 

• Let  fx,y(x,y) = joint density function. Then 
the marginal density functions are given by

x

y

Graphic interpretation of 
marginal density functions

• Marginal density is area under a “slice” of 
the joint density.

x

y

Independence

• Two random variables are independent if 
and only if the value taken by one has no 
effect on the distribution of the other.

• Formally, X and Y are independent if and 
only if  fx,y(x,y) = fx(x) fy(y).

Independence of discrete random 
variables: example

• Here, X and Y are not independent because 
0.1 = Prob{X=1 and Y=2}  0.4 x 0.3 .

Y=1         Y=2           Y=3

X=1           0.2            0.1            0.1

X=2           0.3            0.2            0.1

Marginal Y    0.5            0.3            0.2

Marginal X

0.4

0.6
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Independence of discrete random 
variables: more examples

• What is the probability of rolling two dice 
and getting “boxcars” (two sixes)?
• If the dice are independent, 

fx,y(6,6) = fx(6) fy(6) = (1/6)(1/6) = _____.

• What is the probability of rolling a three and 
a four?
• If the dice are independent,  fx,y(3,4) + f4,3(4,3) 

= (1/6)(1/6) + (1/6)(1/6) = _____.

Conditional distribution

• The conditional distribution of y given x is 
the distribution of y assuming that x takes 
some particular value.

• Write  “fy|x(y|x).”  Read “|” as “given” or 
“conditional on”.

• Calculate as   fy|x(y|x) = f(x,y) / fx(x) .

• Probabilities of conditional distributions 
(like ordinary distributions) must sum to 
one.

Conditional distribution of discrete 
random variable: example

• If X=1, restrict our attention to first row, 
whose total probability is 0.4.

• fy|x(2|1) = __________________.

Y=1         Y=2           Y=3

X=1           0.2            0.1            0.1

X=2           0.3            0.2            0.1

Marginal Y    0.5            0.3            0.2

Marginal X

0.4

0.6

Conditional distributions of 
independent random variables

• Recall:  Two random variables are 
independent if and only if the value taken 
by one has no effect on the distribution of 
the other.

• This means that the conditional distribution 
is always the same, and thus equal to the 
marginal distribution:  fy|x(y|x)  = fy(y).

Conditional distributions of 
independent random variables: 

alternative example

• fy|x(2|1) = _________________________.

Y=1         Y=2           Y=3

X=1           0.05            0.1            0.1

X=2           0.15            0.3            0.3

Marginal Y    0.2            0.4             0.4

Marginal X

0.25

0.75

Conclusions

• A ___________ distribution shows probabilities 
of any particular combination of values of random 
variables.

• A ___________ distribution is just the distribution 
of one random variable in a joint distribution.

• A ____________ distribution shows probabilities 
of one variable given that another random variable 
takes a particular value.

• For ____________ random variables, the marginal 
distribution equals the conditional distribution.
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EXPECTED VALUE 
OR MEAN

• What is the “mean” of a random 
variable?

• How can we evaluate the mean of a 
linear function of a random variable?

Central tendency of a random 
variable

• Often we want to characterize a random 
variable by the value it tends to take on 
average--that is, its central tendency.

• One measure of central tendency is the 
expected value or mean.

Expected value:  definition

• The sum of all possible values of a random 
variable, after first multiplying them by 
their probabilities.

• Notation:  E(X).

• Expected value of random variable 
sometimes called mean or population mean.

Expected value for a discrete 
random variable

• Suppose random variable X can take n 
possible values:    x1, x2, … , xn.

• Each value xi has associated probability  pi.

• Then  E(X) is given by:

Expected value for a discrete 
random variable:  example 1

• Suppose a fair coin is flipped and a game 
contestant is awarded $10 if “heads” shows, 
and $50 if “tails” shows.

• Let X = amount awarded.

• Then x1 = $10, p1 = 1/2, x2 = $50, p2 = 1/2.

• E(X) = x1 p1 + x2 p2 = _______.

Expected value for a discrete 
random variable:  example 2

• Suppose a fair die is thrown and the game 
player gets to advance her or his token the 
number of spaces shown on the face.

• Let X = amount shown on face.

• Then x1=1, x2=2, x3=3, x4=4, x5=5, x6=6.

• Prob{x1=1} = … = Prob{x6=6} = 1/6.

• E(X) = x1p1 + x2p2 + … + x6p6 = _______.
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Expected value for a discrete 
random variable:  example 3

• Suppose X takes three possible values.
• Prob{X=1} = 0.5

• Prob{X=3} = 0.25

• Prob{X=11} = 0.25

• Then E(X) = 1*0.5 + 3*0.25 + 11*0.25
= _______.

Expected value for a continuous 
random variable

• Suppose random variable X can take a 
continuous range of possible values.

• The probability of any subrange is given by 
the area under the density function f(x).

• Then  E(X) is given by:

Expected value for a continuous 
random variable:  example 1

• Suppose a continuous 
random variable has 
density function
f(x) = 1/2 from x=0 to 
2, and zero otherwise.

• Then E(X) =

0 1 2

1/2

Sample mean versus population 
mean

• Sample mean = average of outcomes in a 
sample of  n  observations chosen from a 
larger population or distribution.

• Denote sample mean as         .  

• Sample mean need ________ equal 
population mean because sample is just a 
subset of population.

Expectations of functions of 
random variables

• Let g(x) be some function.  Its expectation 
is defined as follows.

• If X is a discrete random variable:

• If X is a continuous random variable:

Expectation of linear functions of 
random variables

• For most functions g(x), the expectation 
E(g(X)) is a mess.  But it is easy to show 
that for linear functions, E(g(X)) is simple.

• Let  X  and  Y  denote random variables, 
and let  a  and  b  denote constants.

• E(aX + b) = a E(X) + b.  (“linear operator”)

• E(X + Y) = E(X) + E(Y).
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Expectation of linear functions of 
random variables:  examples

• Suppose  E(X) = 5  and  E(Y) = 2.
• If  Z = 3X + 7  then  E(Z) = ______.

• If  W = X + Y  then  E(W) = ______.

• Suppose we have  n  random variables
X1, ... , Xn and each of them has the same 
mean  E(Xi) = 11.

• Then                                       ______.

Expectation of nonlinear functions 
of random variables

• There are no such simple rules for nonlinear 
functions.

• E(X2)   (E(X))2.

• E(X3)   (E(X))3.

• E(ln(X))   ln(E(X)).

Mean of product of random 
variables

• In general, E(XY)   (EX)(EY).

• However, in the very special case where  X  
and  Y  are independent random variables, 
then E(XY) = (EX)(EY).

Remarks

• Synonym for mean = “first moment.”

• Mean need not be finite.  Example:  Cauchy 
distribution (= “t” distribution with 1 degree 
of freedom) has no finite mean.

• However, mean will be finite for all 
distributions we will use in this course.

Conclusions

• Expected value (or population mean) = 
average value of a random variable.

• Expected value is computed by multiplying 
each possible value by its ____________ , 
and then summing the results.

• For a linear function of a random variable, 
the mean of the linear function is the linear 
function of the ____________.
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VARIANCE AND 
STANDARD DEVIATION

• What is the “variance” of a random 
variable?

• What is the “standard deviation”?
• How can we evaluate the variance of a 

linear function of a random variable?

Dispersion of a random variable

• Often we want to measure a random 
variable’s dispersion or spread around its 
central tendency.

• One measure of dispersion is the variance.

Variance:  definition

• Consider the difference between a random 
variable X and its mean E(X):  X-E(X).

• The sum of all possible squared differences, 
after first multiplying them by their 
probabilities.

• Variance of X =  E  [X - E(X)]2 .

• Notation:  Var(X).

Remarks

• Synonym for variance = “second moment 
about the mean.”

• Variance need not be finite.  Example:  “t” 
distribution with 2 degrees of freedom has 
no finite variance.

• However, variance will be finite for all 
distributions we will use.

Variance of a discrete random 
variable

• Suppose random variable X can take n 
possible values:    x1, x2, … , xn.

• Each value xi has associated probability  pi.

• Then  Var(X)  is given by:

Variance of a discrete random 
variable:  example

• Suppose X takes three possible values.
• Prob{X=1} = 0.5

• Prob{X=3} = 0.25

• Prob{X=11} = 0.25

• It is easy to show that  E(X) = ______.

• So Var(X) = (1-4)2 * 0.5 + (3-4)2 * 0.25
+ (11-4)2 * 0.25 = _____.
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Variance of a continuous random 
variable

• If  X  is a continuous random variable, then 
Var(X) is given by:

Variance of a continuous random 
variable:  example

• Suppose a continuous 
random variable has 
density function
f(x) = 1/2 from x=0 to 
2, and zero otherwise.

• Then Var(X) =

0 1 2

1/2

Key properties of variance

• The following properties are not hard to 
show.

• Suppose  X  is a random variable.
• Then  Var(X) = E(X2) - (EX)2 .

• Suppose  a  and  b  are constants and  X  is a 
random variable.
• Then  Var(aX + b) = a2 Var(X).
• Also  Var(a) = Var(b) = 0.

Examples of properties of 
variance

• Suppose  Var(X) = 5.
• Then  Var(3X + 13) = ______.

• Suppose Var(X) = 7.
• Then Var(2X – 5) = ______.

• Also,  Var(7) = _____.

Definition of standard deviation

• Standard deviation is the square root of the 
variance:  SD(X) = [Var(X)]1/2 .

• Key properties of standard deviation follow 
from properties of variance.

• Suppose  a  and  b  are constants and  X  is a 
random variable.  Then, obviously,
• SD(a) = _________.

• SD(aX + b) = _________.

Conclusions

• Variance = expected value of the squared 
deviation of a random variable from its mean.

• Standard deviation = _________________ of 
variance.

• For a linear function of a random variable, the 
variance of the function equals the coefficient 
______________ times the variance of the random 
variable itself.
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CONDITIONAL EXPECTATION

COVARIANCE, CORRELATION, 
AND CONDITIONAL 

EXPECTATION

• What are “covariance” and 
“correlation”?

• What is the mean of a random variable, 
“conditional” on another random 
variable?

Measures of association between 
random variables

• Often we want to measure how closely two 
random variables move together.

• Two such measures of 
association are
• covariance

• correlation

Covariance:  definition

• Expected value of the product of the 
deviations of two random variables from 
their respective means.

• Cov(X,Y) = E [ (X-EX)(Y-EY) ].

• Measures how the variables move together.

Covariance for discrete random 
variables

• Suppose X and Y are discrete random 
variables, taking n and m different values 
respectively.

• Cov(X,Y) =

Covariance for continuous 
random variables

• Suppose X and Y are continuous random 
variables.

• Cov(X,Y) =

Meaning of positive covariance

If Cov(X,Y)>0, then

• When X is above its 
mean, Y is usually 
also above its mean.

• When X is below its 
mean, Y is usually 
also below its mean.

x

y

EY

EX
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CONDITIONAL EXPECTATION

Meaning of negative covariance

If Cov(X,Y)<0, then 

• When X is above its 
mean, Y is usually 
also below its mean.

• When X is below its 
mean, Y is usually 
also above its mean.

x

y

EY

EX

Alternative expressions for 
covariance

• It can be shown that Cov(X,Y)
= E [(X-EX)(Y-EY)]
= E [(X-EX) Y]

= E [X (Y-EY)]

= E(XY) – EX EY.

• Note that if EX=0 or EY=0, then
Cov(X,Y) = ____________.

Properties of covariance

• Covariance can be, positive, negative, or 
zero. 

• If X and Y are independent, Cov(X,Y)=0.
• But converse is not necessarily true.

• Cov (aX+b, cY+d) = ac Cov(X,Y).
• Cov (X,X) = Var(X).
• |Cov (X,Y)| < SD(X) SD(Y)  [“Schwarz 

inequality”].

Variance of sum of random 
variables

• Var(X+Y)
= E [ (X+Y) – (EX+EY) ] 2

= E [ (X–EX) +(Y–EY) ] 2

= E (X–EX)2 + E(Y–EY)2

+ 2 E [ (X–EX)(Y–EY) ]
= Var(X) + Var(Y) + 2 Cov(X,Y).

• Var(aX+bY) =
a2 Var(X) + b2 Var(Y) + 2 ab Cov(X,Y).

Examples

• Suppose Var(X) = 4, Var(Y) = 9, and 
Cov(X,Y) = -3.

• Then Var(X+Y) = 4 + 9 + 2(-3) = ______.

• Also, Var(3X + 5Y) 
=  9(4) + 25(9) + 2(3)(5)(-3)
= ________.

Special case:  variance of sums of 
random variables with no covariance

• If Cov(X,Y) = 0,
• Var(X+Y) = Var(X) + Var(Y).

• Var(X-Y) = Var(X) + Var(Y).

• If X1, X2, …, Xn all have pairwise zero 
covariance, 
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Example

• Suppose Var(Xi) = 7.2 for  i=1, ..., 20 and 
the Xi have pairwise zero covariance.

• Then 

Correlation coefficient

• Covariance divided by product of standard 
deviations.

• Corr(X,Y) = Cov(X,Y) / [SD(X) SD(Y)].

• By Schwarz inequality, -1 < Corr(X,Y) < 1.

Properties of correlation 
coefficient

• Corr (aX+b, cY+d) 
= Corr(X,Y)   if  (ac)>0.
= - Corr(X,Y)  if  (ac)<0.
• Thus correlation is unaffected by scaling, only 

by sign.

• Corr (X,X) = ______.

• Corr (X,-X) = ______.

Y given X

• Often we want to know what value Y will 
likely take, given that X takes some given 
value.

• Example:  What wage (Y) will a person 
likely earn, given that person has 16 years 
of education (X)?

• Example:  What will be tax revenue (Y) 
given that GDP (X) is 3 percent higher than 
last year?

Conditional expectation

• Covariance and correlation coefficient 
cannot answer this kind of question.

• We need conditional mean or expectation.

• E(Y|X=x) = expected value of Y given that 
X takes the particular value x.

• Expectation is computed using the 
______________ distribution.

Formulas for conditional 
expectation

• If Y is discrete,

• If Y is continuous,
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Calculating E(Y|X=x) 
if Y is discrete:  example

• First compute marginal probabilities for X.

• Then compute conditional probabilities 
given X=1:  f(1|X=1)=______________,    
f(2|X=1)=_____,     f(3|X=1)=_____.

Y=1         Y=2           Y=3

X=1           0.2            0.1            0.1

X=2           0.3            0.2            0.1

Calculating E(Y|X=x) 
if Y is discrete:  example (cont’d)
• Finally, use the conditional probabilities to 

compute the conditional mean:
E(Y|X=1) = 0.5(1)+0.25(2)+0.25(3)=_____

Y=1         Y=2           Y=3

X=1           0.2            0.1            0.1

X=2           0.3            0.2            0.1

Marginal 
X

0.4

0.6

Conditional expectation as a 
function

• E(Y|X=x) can be 
viewed as a function 
of x.

• But E(Y|X=x) is 
NOT the inverse of 
E(X|Y=y). 

x

y

EY

EX

E(Y|X=x) can be a linear or 
nonlinear function of x

Education
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E(Y|X=x) can be a linear or 
nonlinear function of x

Education

W
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e
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x 

re
ve
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eE(Y|X=x) linear E(Y|X=x) nonlinear

Conditional mean is the best 
predictor

• Suppose we want to predict someone’s 
wage given her or his education.

• No prediction is 100% accurate, but 
suppose we want to choose a prediction 
formula that minimizes the mean squared 
prediction error.

• It can be shown that our best choice for a 
predictor is the _____________________:  
E(wage|education).
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COVARIANCE, CORRELATION, AND 
CONDITIONAL EXPECTATION

Conditional mean is the best 
predictor (cont’d)

• Suppose we want to predict tax revenues 
given GDP.

• Again, suppose we want to minimize the 
mean squared prediction error.

• Then our best choice for a predictor is the 
_______________________:  
E(tax revenue|GDP).

Properties of conditional 
expectation

• If X and Y are independent, then E(Y|X=x) 
= E(Y) and thus not a function of x.*

• If  E(Y|X=x) = E(Y), then 
• Cov(X,Y) = 0 = Corr(X,Y).

• Any function of X is uncorrelated with Y.

*But the converse is not true.

Conditional variance

• Var(Y|X=x) = Variance of Y given that X 
takes the particular value x.
• Variance is taken around the 

________________ mean, using the 
________________ distribution.

• If X and Y are independent, 
Var(Y|X=x) = Var(Y).

Conclusions

• Covariance and the correlation coefficient 
are measures of association.

• Covariance can take any value, but the 
correlation coefficient is bounded between 
_______________.

• Conditional expectation gives the expected 
value of one random variable __________
a value of another.
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THE BERNOULLI DISTRIBUTION

THE BERNOULLI 
DISTRIBUTION

• An important discrete distribution.

A two-valued random variable

• Suppose a random variable can take only 
two values, say zero and one.

• Let p = Prob{X=1}.

• Then  Prob{X=0} =________.

Mean and variance

• E(X) =  p (1)  +  (1-p) (0)  =  _____.

• Var(X) =  P (1-p)2 +  (1-p) (0-p)2

=  p (1-p)2 +  (1-p) p2

=  p (1-p)  [ (1-p) + p ]
=  __________.

Example 1

• Suppose X is 
distributed as 
Bernoulli with 
parameter p = 0.5.

• Then E(X) = ______.

• And Var(X) =  p (1-p) 
= ______.

0 1

1

0.5

Probability function

Example 1 (cont’d)

• As with all discrete 
random variables, 
the cumulative 
distribution function is 
a step-function.

0 1

1

0.5

Cum. distr. function

Example 2

• Suppose X is 
distributed as 
Bernoulli with 
parameter p = 0.2.

• Then E(X) = _____.

• And Var(X) = _____.

0 1

1

0.5

Probability function
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THE BERNOULLI DISTRIBUTION

Example 2 (cont’d)

• As with all discrete 
random variables, 
the cumulative 
distribution function is 
a step-function.

0 1

1

0.5

Cum. distr. function

Conclusions

• A Bernoulli random variable takes two 
values, zero and one.

• If Prob{X=1} = p, the E(X) = _____
and Var(X) = ________.

• The cumulative distribution function has 
two steps.
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THE NORMAL DISTRIBUTION

THE NORMAL 
DISTRIBUTION

• An important continuous 
distribution.

Definition of the normal 
distribution

• Density function is given by

• A bell-shaped curve, symmetric about x = ______.

• Note that as  x  gets far from   , the term in 
parentheses gets more negative, so f(x) approaches 
____________.

Normally-distributed random 
variables

• Are continuous random variables.

• Can take any real-number value—positive, 
negative or zero.

• Notation:  “X ~ N(, 2)”  means
“X is normally-distributed with parameters  
 and  2 .”

Mean and variance

• It can be shown by integration that 
E(X) = 

• Because distribution is symmetric around , 
 is also the median and the mode.

• It can be shown by integration that 
Var(X) = _____.



How the  2 parameter affects 
the shape of the density function

How the   parameter affects the 
shape of the density function
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THE NORMAL DISTRIBUTION

Cumulative distribution function

• Cumulative distribution function is

An S-shaped curve.

• Integral has no closed form—no simple formula.

• But function available in Excel and statistical 
software.

Linear functions of normal 
random variables are also normal
• If  X ~ N(, 2) ,  then  Z = aX + b  is also 

normally distributed.

• Using the formulas for linear functions of 
any random variable,  E(Z) = a+b  and  
Var(Z) = a22 .

• So  Z ~ N ( a+b, a22 ).

Joint normal distribution

• If  X  and  Y  are jointly normally 
distributed and their covariance is zero, then 
X  and  Y  are independent.
• Recall: for other distributions, zero covariance 

does not necessarily imply independence.  But 
here it does!

• Any linear combination of jointly normal 
random variables is also normal.

The standard normal distribution

• The special normal distribution with  = 0 
and 2 = 1.

• Thus, standard normal:  Z ~ N(0,1).

• Functions for standard normal cumulative 
distribution are available in Excel and 
statistical software.

“Standardizing” a normal 
distribution

• Suppose  X ~ N(, 2) .
• Then  Z =  (X-)/ ~  N(0,1) .
• So Prob{ X< a } 

= Prob{ (X-)/ <  (a-)/}
= Prob{ Z  <  (a-)/ }

• In words, if we subtract the mean and divide 
by the standard deviation, we have a 
_____________ normal random variable.

“Standardizing” a normal 
distribution:  example

• Suppose  X ~ N(, ) .  

• What is Prob{X< 4} ?

• Prob{X< 4} = Prob{ Z < (4-2)/3 }
= Prob{Z < 0.67},  where  Z~N(0,1).

• From table of standard normal cumulative 
distribution in textbook, 
Prob{X<4} = Prob{Z < 0.67} = 0.7486 .
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THE NORMAL DISTRIBUTION

Standard normal is symmetric 
around zero

• Prob{Z<-a} = Prob{Z>a}.

• Prob{|Z|>a} = 2  Prob{Z>a}.

0 a-a

Central Limit Theorem

• Suppose X1, X2, …, Xn are independent 
identically-distributed random variables 
(not necessarily normal) each with mean 
E(Xi)= and variance Var(Xi)=2.

• Then

Another way of stating the 
Central Limit Theorem

• This result can alternatively be expressed 
as:

• This asymptotic normal distribution gets 
more accurate as  n  increases.

What the Central Limit Theorem 
means

• Suppose we compute the sample mean  X  
from a random sample  X1, ... , Xn .

• Now  X  is itself a _____________ variable, 
varying randomly from one sample to the 
next.

• If the samples are large enough, then  X  
will behave as if it were normally 
distributed, regardless of distribution of  Xi .

_

_

_

What the Central Limit Theorem 
means:  example

• Example:  Suppose a sample of  n  values  
Xi are drawn from a Bernoulli distribution 
with mean  p = 0.5.

• Then we compute                            .

• If we draw many samples, and compute  X 
each time, what does the distribution of  X  
look like?

_
_

Distribution of  X  looks increasingly like a 
normal bell curve as  n  gets larger

_
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THE NORMAL DISTRIBUTION

Applying the Central Limit Theorem

• Suppose  Xi , i=1, ..., 100  are Bernoulli 
random variables with  Prob{Xi=1} = 0.4.

• Then E(Xi) = 0.4 and Var(Xi) = 0.24.

• By the Central Limit Theorem,

Applying the Central Limit Theorem

• Suppose  Xi , i=1, ..., 100  are Bernoulli 
random variables with  Prob{Xi=1} = 0.4.

• Then E(Xi) = 0.4 and Var(Xi) = 0.24.

• By the Central Limit Theorem,

Bell-shaped curve

Conclusions

• The normal distribution is a _______________ 
distribution with a bell-shaped density function.

• The ____________ normal distribution has mean 
= 0 and variance = 1.

• Linear functions of joint normal random variables 
are also normally-distributed.

• The sample mean of  n independent identically-
distributed random variables is _______________ 
normally-distributed.

Part 1:  Introduction and review Page 1-44

STAT 170 - Regression and Time Series © 2024  William M. Boal



DISTRIBUTIONS RELATED TO THE 
NORMAL DISTRIBUTION

DISTRIBUTIONS RELATED TO 
THE NORMAL DISTRIBUTION

•What is the chi-square distribution?

•What is the  t distribution?

•What is the  F distribution?

The chi-square distribution
• Suppose Z1, Z2, …, Zn are independent N(0,1) 

random variables.  Then

is distributed as chi-square with  n  degrees of 
freedom (DOF=n).

• Notation:  Y ~ 2(n) .

Properties of chi-square random 
variables

• E(Y) = n,  and  Var(Y) = 2n.

• Y > 0, so distribution is skewed to right.  
However, becomes more symmetric as  n  
gets large.

• If  Y1 ~ 2(n1)  and Y2 ~ 2(n2) ,  then
Y = (Y1+Y2) ~ 2(n1+n2). 

The  t distribution
• Suppose  Z ~ N(0,1)  and  Y ~ 2(n)  are 

independent random variables.  Then

is distributed as  t with  n  degrees of freedom 
(DOF=n).

• Notation:  W ~ t(n).

Properties of the  t distribution

• Density is bell-shaped curve, symmetric 
around zero (=median and mode).

• Density > 0 for all x (never touches axis).

• E(W) = 0,  for  n > 1.

• Var(W) = n/(n-2) > 1,  for  n > 2.

• As  n  approaches infinity, t(n) approaches 
N(0,1).
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DISTRIBUTIONS RELATED TO THE 
NORMAL DISTRIBUTION

The  F distribution
• Suppose Y1 ~ 2(n1)  and  Y2 ~ 2(n2)   are 

independent random variables.  Then

is distributed as  F with  n1 degrees of 
freedom in the numerator and n2 degrees of 
freedom in the denominator.

• Notation:  V ~ F(n1, n2).

Properties of the  F  distribution

• V > 0, so distribution is skewed to right.  
However, becomes more symmetric as  n1

gets large.

• t and  F distributions are related:
If  W ~ t(n),  then W2 ~ F(1,n).

• E(V) = n2/(n2-2).  Thus E(V) approaches 1 
as n2 approaches infinity.

Conclusions

• A ___________ random variable takes only 
positive values and its mean equals its DOF.

• A __________  random variable is similar 
to a standard normal random variable, but it 
has fatter tails.

• An __________ random variable is similar 
to a chi-square, but its mean approaches 
______ as the DOF in the denominator 
become large.
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RANDOM SAMPLES AND  ESTIMATORS

RANDOM SAMPLES AND 
ESTIMATORS

•What can a small sample tell us 
about a larger population?

Random samples

• A random sample is a set of observations 
chosen at random from a fixed larger 
population.

• Example:  A random sample of heights 
might be taken by choosing individuals at 
random (e.g., from a phone book or roster) 
and measuring them.

A sample is an observed subset of a 
larger population

Population

?

?
?

?

?

?
?

?

?

?

?

?

?
?

?

?

?
?

?
?

?
?

?

?

?
? ?

?
?

?

?

?

?
?

?

?

The problem of estimation

• Given a random sample, we wish to guess 
the population distribution from which it 
was drawn.

• We cannot observe the entire population, 
however, due to financial or physical 
constraints.

• The sample is ______________, whereas 
the population distribution is fixed but 
__________________.

Example for continuous population 
distribution

• Given a sample of heights of students, we might 
wish to guess the population distribution from 
which it was drawn.

?

Example for discrete population 
distribution

• Given a sample of opinions from a telephone 
survey, we might wish to guess the population 
distribution from which it was drawn.

? ?
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RANDOM SAMPLES AND  ESTIMATORS

The parametric approach to 
estimation

• We can simplify the problem by assuming 
the general form of the distribution (e.g., 
Bernoulli, normal, etc.).

• The problem is thus reduced to finding the 
true population values of a few unknown 
parameters (e.g.,  p  for Bernoulli,   and  
 for normal, etc.).

“Estimator” versus “estimate”

• An estimator is a formula, that when applied to the 
data in a sample, gives a value for the unknown 
parameters.

• Estimators for unknown parameters are typically 
denoted with “^”.

• Since sample data are random (they vary from 
sample to sample) the estimator is itself a 
____________________.

• An estimate is a particular value taken by the 
estimator for a particular set of data.

“Estimator” versus “estimate”:  
example

• Suppose we wish to guess the population 
distribution of heights of all Drake students 
using a sample of 10 students.

• Taking a parametric approach, we assume 
the population distribution is normal, and 
seek to estimate  and   .

“Estimator” versus “estimate”:  
example (cont’d)

• As our estimator for   we might choose 
the sample mean:

• Using measurements  xi from our sample of 
10 students, we apply our estimator and 
compute an estimate of

Many estimators for the same 
unknown parameter

• Many estimators can be used to estimate the 
same unknown parameter.

• For example, suppose we have a random 
sample X1, …, Xn which we believe is 
drawn from ) where   and  2 are 
unknown parameters.

• Here are four possible estimators for  and 
two possible estimators for 2 .

Some possible estimators for 
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RANDOM SAMPLES AND  ESTIMATORS

Some possible estimators for 2 No estimator is perfect

• Estimators (except for silly ones) are 
random variables whose values vary from 
sample to sample.

• Estimators are __________ guaranteed to 
equal or even to be close to the fixed but 
unknown true population values.

• So if we want to estimate some parameter, 
which estimator should we choose?

What makes a good estimator?

• We want the estimator that is “closest” to 
the true value of the unknown parameter 
“most” of the time.

• But what does that mean?  Need more 
precise criteria.  Need to compare the 
properties of alternative estimators.

Two kinds of properties of 
estimators

• Exact or “small-sample” properties: Hold 
exactly for any sample.
• Most useful criteria, but may be difficult to 

evaluate.

• Asymptotic or “large sample” properties:
Approximate tendencies of estimators as 
sample size increases.
• Asymptotic properties hold approximately if 

the sample size is large.

Conclusion

• An ________________ is a formula.  Its value 
varies randomly from sample to sample.

• An ________________ is the particular value 
taken by that formula in a particular sample.

• ___________-sample properties describe the 
behavior of an estimator exactly.

• ___________-sample properties describe the 
approximate tendencies of the estimator as the 
sample size increases.
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EXACT FINITE-SAMPLE PROPERTIES 
OF ESTIMATORS

EXACT FINITE-SAMPLE 
PROPERTIES OF ESTIMATORS

•What are “bias,” “variance,” and “mean 
squared error”?
•What makes an estimator “linear” or 
“best-unbiased”?

Evaluating exact finite-sample 
properties of estimators

• In this slideshow, we define some properties of 
estimators that describe their behavior exactly, 
even in small samples.

• We then evaluate those properties for the 
estimators of the mean and variance of a normal 
distribution, defined in a previous slideshow:   

Estimators are themselves random 
variables

• Estimators are computed from observations, 
sampled at random.

• From one sample to another, the same estimator 
yields different values—it varies randomly.

• This phenomenon is called sampling variation or 
sampling error.



True population 
value of 

Means and variances of estimators

• Estimators have their own means and 
variances, which may be different from 
those of the population:

Definition of linear estimator

• A linear estimator is a linear function of the 
observations  X1, X2, …, Xn .

• It has the general form  a1X1+a2X2+…+anXn

or

where  a1, a2, ... , an are constant numbers.

Why linearity a useful property

• Linearity is not itself a desirable property.

• But linear estimators have relatively simple 
formulas.

• It is much easier to find formulas for the 
mean and variance of a linear estimator than 
of a nonlinear estimator.
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EXACT FINITE-SAMPLE PROPERTIES 
OF ESTIMATORS

Are these estimators linear? Are these estimators linear?

Mean and variance of linear 
functions of random variables

• Recall that the mean of a linear function equals the 
linear function of the means:
E(a1X1+a2X2+…+anXn) = 

• Also, if the random variables have zero 
covariances, the variance of the sum equals the 
sum of the variances:  Var(a1X1+a2X2+…+anXn) = 

Definition of bias

• Suppose     is an estimator for the true 
unknown population parameter   .  Then:



Why bias is an undesirable property

• Bias measures the difference between the 
mean of the estimator and the true 
population parameter we are trying to 
estimate.

• All else equal, estimators with 
________________ bias are desirable.

Biased versus unbiased estimators

• If                   , that is, if the estimator’s bias is 
zero,  then the estimator is called unbiased.

• An unbiased estimator’s distribution is centered 
exactly on the true population parameter value.



Unbiased
estimator
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EXACT FINITE-SAMPLE PROPERTIES 
OF ESTIMATORS

Specific examples:  finding formulas 
for bias in estimators for 

• So      is unbiased.
• It can also be shown that       , the sample 

median, is unbiased when sampling from a 
normal distribution.

Specific examples:  finding formulas 
for bias in estimators for (cont’d)

• Thus,      is __________.

• Also, the silly estimator       is biased, since

Specific examples:  finding formulas 
for bias in estimators for 

• It is not hard to show that

so       is biased:

• However, 

so       is unbiased.

Definition of variance of estimators

• Most estimators have variance:

• If an estimator is unbiased, then its variance 
is given by

Why low variance is a desirable 
property

• Suppose two estimators have the same mean.

• If one estimator has lower variance than another, 
then its distribution is bunched more tightly.

• Assuming the first estimator’s bias is low, it is 
more likely to lie near the true population value of 
.



Definition of minimum variance

• An estimator      is minimum variance (MV) 
among a given set of alternative estimators 
if it has the smallest variance, whatever the 
true population value of  .

• It is easy to find estimators with very low 
variance, but often they are not good 
estimators for other reasons.
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EXACT FINITE-SAMPLE PROPERTIES 
OF ESTIMATORS

Specific examples:  finding formulas 
for variance of estimators for 

• We can use the rules for variances of linear 
functions, and the fact that observations in a 
random sample have zero covariance, to get:

Specific examples:  finding formulas for 
variance of estimators for  (cont’d)

• Var(     )  is quite complicated, but when  n  
is large, it equals approximately 

• It follows that

• So the silly estimator      is MV in this set of 
four estimators, followed by      .

Variance of estimators for 

• It can be shown that 

so        is MV in this set of two estimators.

Trading off properties

• Low bias and low variance are both desirable 
properties, usually.

• How can we combine them into a single criterion 
for ranking alternative estimators?

Lower variance



Unbiased

Ruling out silly estimators

• From another perspective, how can we rank 
alternative estimators in a reasonable way, 
yet rule out silly estimators like         ?

• Two ways:  best unbiased, and mean square 
error.
1. Best unbiased simply ignores biased 

estimators.
2. Mean square error combines bias and 

variance into a single formula.

1. Definition of best unbiased

• An estimator      is the best unbiased 
estimator (BUE) if it is MV among all 
possible unbiased estimators of   .

• Common synonyms for best unbiased:
• Efficient.

• Uniformly minimum-variance unbiased 
estimator (UMVUE).
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EXACT FINITE-SAMPLE PROPERTIES 
OF ESTIMATORS

Examples of best unbiased 
estimators

• It can be shown that           is the BUE for  
when sampling from a normal distribution.

• It can be shown that           is the BUE for 

when sampling from a normal distribution.

2. Definition of mean squared error

• Definition:

• In words:  For each possible value of estimator, 
find the distance to true parameter value, square 
this distance, multiply by associated probability, 
and sum.  

• Estimators with
_____ MSE are
desirable.



Useful formulas for MSE

• If      is unbiased, then

• More generally, it is not hard to show that

Specific examples:  finding formulas for 
MSE of estimators for 

• Since       and      are both unbiased, their MSEs 
are equal to their variances.  So 

• By contrast,       is biased, so its MSE is given by

• This expression will be much larger than
if  is large, relative to n and 2.

Specific examples:  finding formulas for 
MSE of estimators for  (cont’d)

• Since the silly estimator       has zero 
variance, its MSE is given by the square of 
its bias:       (47-)2 .

• Unlike the MSEs for the other three 
estimators, this MSE does not decrease as 
the sample size (n) increases.

• So the MSEs of the other three must 
eventually beat this one (unless by some 
miracle the true value of   is exactly 47 !).  

MSE of estimators for 

• It can be shown that 

even though       is biased.
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EXACT FINITE-SAMPLE PROPERTIES 
OF ESTIMATORS

Conclusion

• Estimators are random variables, and have their 
own means and variances.

• An _____________ estimator has mean equal to 
the true population parameter.

• A _______________________________ (or 
efficient) estimator has the lowest variance among 
unbiased estimators.

• The ______________________ of an estimator is 
the sum of its variance and the square of its bias.

• A good estimator has low bias, low variance, and 
especially low MSE.
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ESTIMATORS

ASYMPTOTIC PROPERTIES 
OF ESTIMATORS

•What are “asymptotic bias” and 
“consistency”?

Evaluating asymptotic 
properties of estimators

• In this slideshow, we define two properties of 
estimators that describe their behavior as the 
sample size (n) grows without bound.

• We then evaluate those properties for specific 
examples of estimators defined in a previous 
slideshow:   

Why asymptotic properties?

• We never have an infinite sample (n=        )
so why care about asymptotic properties?

• Indicators of reasonableness: A good 
estimator should get closer to the true value as 
the sample size increases.

• Handy approximations for computation:
Asymptotic distributions are often simpler to 
work with than exact distributions of 
estimators.

Definition of asymptotic bias
• Asymptotic bias of an estimator      is limit of 

bias as sample size increases without bound.

• Formally,

Asymptotically unbiased 
estimators

• A good estimator, if biased, should have a bias 
that disappears as the sample size increases.

• Thus estimators with __________ asymptotic bias 
are desirable.



N=10N=100N=500

“Unbiased” implies
“asymptotically unbiased”

• Estimators which are unbiased in finite sample 
must obviously be asymptotically unbiased, 
too.

• Thus the sample mean          , and the sample 
median         are asymptotically unbiased 
because they are unbiased in finite sample.
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ASYMPTOTIC PROPERTIES OF 
ESTIMATORS

• What about the sample mean with  n  replaced 
by  n+1  (      ) and the silly estimator (      ) ?

• Recall from previous presentation,

• Also recall from previous presentation,

Checking asymptotic bias
of estimators for 

• Consider      , the variance estimator dividing 
by n.  In previous slideshow, we claimed that

• Also claimed that      , the variance estimator 
dividing by (n-1), was unbiased, so it must be 
asymptotically unbiased. 

Checking asymptotic bias
of estimators for 

Summary of results for example 
estimators

• are all asymptotically 
unbiased, so they are all good estimators by 
that criterion.

• The silly estimator         is __________ 
asymptotically unbiased, so it is not a good 
estimator.

• are both asymptotically 
unbiased, so they are good estimators.

Definition of consistency
• An estimator is consistent if the probability 

that the estimator is more than any given 
distance from the true value converges to zero 
as the sample grows without bound.

• Formally,       is consistent if for any positive 
number  ,

Consistent estimators

• Most estimators occasionally yield values far from 
the true value, due to sampling variation.

• A consistent estimator does this less and less 
frequently, as the sample size increases.

N=500

N=10

 +

(1) The estimator converges in probability to the 
true population parameter.  Notation:

(2) The true population parameter is the 
probability limit of the estimator.  Notation:

Alternate terminology for 
consistency

Part 1:  Introduction and review Page 1-57

STAT 170 - Regression and Time Series © 2024  William M. Boal



ASYMPTOTIC PROPERTIES OF 
ESTIMATORS

Consistent estimators are 
desirable

• Of course, our samples usually do not grow 
in size spontaneously.

• Nevertheless, any estimator that would not 
get closer to the true value, as the sample 
size increased, is surely suspect.

How to check consistency
• It can be shown that if the MSE of an estimator 

converges to zero as the sample size (n)  
increases without bound, then the estimator is 
consistent.

• We now apply this handy result to the familiar 
estimators

Checking consistency
of estimators for  using MSE

Checking consistency
of estimators for 

• It can be shown that the MSEs for both
and        converge to zero as  n  increases 
without bound, so both estimators are 
consistent.

What kinds of estimators are 
consistent?

• The mean of a random sample drawn from 
any distribution is a consistent estimator for 
the unknown true population mean, 
according to a theorem called the Law of 
Large Numbers.  

(See a mathematical statistics textbook for 
formal proof).

Conclusions

• An estimator is asymptotically unbiased if 
its bias converges to _____________ as  n 
grows without bound.

• An estimator is consistent if the probability 
that it is more than any given distance from 
the true value converges to _____________ 
as the sample grows without bound.

• Good estimators should be asymptotically 
unbiased and consistent.
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ASYMPTOTIC NORMALITY

•What makes an estimator 
“asymptotically normal”?

•Why is that a useful property?

Definition of asymptotic normality

• An asymptotically normal estimator has a 
distribution which approaches the normal 
distribution as the sample size grows 
without bound.

• Notation:

Why asymptotic normality
is useful

• Often the exact distribution of an estimator 
is hopelessly complicated.

• But its asymptotic distribution may provide 
a good approximation for large samples.

• If the asymptotic distribution is normal, we 
can use a normal table in a textbook, or a 
normal function in Excel or other software, 
to evaluate it.

What kinds of estimators are 
asymptotically normal?

• The mean of a random sample drawn from 
any distribution is asymptotically normal, 
according to the Central Limit Theorem.

• Almost all estimators encountered in 
practice can be shown to be asymptotically 
normal. 

Example:  Bernoulli distribution

• Suppose
• Xi = 1 with probability = p

• Xi = 0 with probabilility = ________.

• E(Xi) = _____.

• Var(Xi) = _________.

Example (cont’d)

• Suppose sample of size  n  is observed.

• Sum of the Xi can take ________ different 
values:  0, 1, 2, 3, ... n.

• Thus sample mean  X also takes _________ 
different values:  0, 1/n, 2/n, 3/n, …, 1.

• Thus the exact distribution of  X  quickly 
becomes hopelessly complicated!
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Example (cont’d)

• But mean and variance of X are simple.
• E(X) = E(Xi) = _________.

• Var(X) = Var(Xi) / n = _____________. 

• So we can apply the Central Limit Theorem 
to find the asymptotic distribution.

Example (cont’d)

• Applying the Central Limit Theorem, the 
asymptotic distribution of  X  must be

How close an approximation is the 
asymptotic distribution?

• How close an approximation does the 
Central Limit Theorem provide?

• In other words, how close is the exact 
distribution of  X  to its asymptotic 
distribution?

• The following charts compare the exact and 
asymptotic distribution functions of  X  for 
p=0.5, and n = 5, 10, and 25.

Exact probability and asymptotic 
density functions for p=0.5, n=5

Exact and asymptotic cumulative 
distributions for p=0.5, n=5

Exact probability and asymptotic 
density functions for p=0.5, n=10
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Exact and asymptotic cumulative 
distributions for p=0.5, n=10

Exact probability and asymptotic 
density functions for p=0.5, n=25

Exact and asymptotic cumulative 
distributions for p=0.5, n=25

Asymptotic distribution often 
provides a very good approximation

• Clearly, the asymptotic distribution appears 
to be a good approximation to the exact 
distribution in this example for n=25.

• Moreover, the approximation gets better as 
the sample size (n) increases.

• But in addition to comparing graphs, we can 
compare calculations of probabilities.

Using the asymptotic distribution to 
calculate probabilities:  example

• Suppose one had a sample of  25 
observations from Bernoulli distribution 
with population mean  p = 0.5 .

• What is the probability that the sample 
mean would be 0.65 or greater?

• We now use the asymptotic normal 
distribution to compute the answer.

Example (cont’d)

• By comparison, exact probability = 0.0539 .
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Example (cont’d)

• By comparison, exact probability = 0.0539 .

What if the true population standard 
deviation is unknown?

• Asymptotic normality still holds when an 
estimate of the standard deviation is used 
instead of its true population value.

Conclusions

• An asymptotically normal estimator has a 
distribution which approaches the 
____________ distribution as the sample 
size grows.

• This property gives a convenient 
approximation to the exact distribution of 
the estimator when the sample size is
____________.
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GOOD ESTIMATORS

RELIABLE PRINCIPLES FOR 
FINDING GOOD ESTIMATORS

• What is the “method-of-moments” 
principle?

• What is the “maximum-likelihood” 
principle?

Principles for finding estimators

• Suppose we want to estimate unknown 
parameters of a distribution that we 
believe is generating our data.

• How should we begin?

• Two general principles work very well in 
most cases.

(1) “Method-of-moments” principle

(2) “Maximum-likelihood” principle

(1) “Method of moments” 
principle

• First, find formulas for the true population 
moments of the distribution in terms of the 
unknown parameters.

• Second, set the sample moments equal to 
the formulas for the true population 
moments.

• Finally, solve for estimators of the 
parameters.

Application to Bernoulli sample:  
true population moment

• Consider coin toss with possibly unfair 
coin.

• Let X = 1 if heads, = 0 if tails.

• Probability of heads =  p,  unknown 
parameter.  Probability of tails =  1 - p  .

• The first moment is the mean: 
• E(X) = (p) 1 + (1-p) 0  =  ______.

Application to Bernoulli sample:  
sample moment

• Suppose we have observations on  n  coin 
tosses:  X1, … Xn.

• To estimate  p  using method-of-moments 
principle, set E(X) = p =  

• Solving for p gives (immediately) a formula 
for the method-of-moments estimator for p:

Numerical example of MOM 
estimator

• Suppose out of 20 coin tosses, 12 tosses 
were heads.

• Then method-of-moments estimate is:
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GOOD ESTIMATORS

What’s so great about MOM 
estimators?

• Method-of-moments estimators are almost 
always
• Consistent.*

• Asymptotically normal.**

• Also, MOM estimation does not require us 
to make assumptions about the whole 
distribution of Xi , only the moments.

* Because of the Law of Large Numbers theorem.
** Because of the Central Limit Theorem.

(2) “Maximum likelihood” 
principle

• First, find the likelihood function of the 
sample.

• Second, solve for the value(s) of the 
parameter(s) that maximize this function.

• But what is the “likelihood function”?

The joint density function of a 
random sample

• Suppose we are willing to assume that our 
sample comes from a particular distribution.

• If we have a random sample, the 
observations are independent.

The joint density function of a 
random sample (cont’d)

• Then the joint density (or joint probability 
function) of the sample is the product of the 
individual density functions (or probability 
functions) of the observations:

f(x1, x2,…, xn) = f(x1) f(x2) … f(xn) . 

From joint density function to 
likelihood function

• The joint density function depends on the 
values of the observations (xi) and the 
parameters of the distribution.

• If the values of observations are known and 
the values of the parameters are unknown, 
this function is called the 
“_______________ function.”

Application to Bernoulli sample:  
finding the likelihood function  

• Recall the Bernoulli distribution:
• X = 1 with probability p.

• X = 0 with probability (1-p).

• One way to represent this as a probability 
function is:  
Prob{X=x} = f(x) = px (1-p)1-x

for x = 0, 1.
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GOOD ESTIMATORS

Application to Bernoulli sample:  
finding the likelihood function 

(cont’d)  
• The likelihood function is the joint density 

of the sample, with  p  viewed as unknown:

Application to Bernoulli sample:  
maximizing the likelihood function  

• Second, maximize the likelihood function 
with respect to unknown  p,  by setting

• The derivative is a little messy, but with 
some algebraic manipulation reduces to

Application to Bernoulli sample:  
maximizing the likelihood function  

(cont’d)
• The derivative equals zero if and only if

• Setting this derivative equal to zero and 
solving for p gives

Comparing ML estimator with 
MOM estimator

• In this application, the maximum-likelihood 
estimator          is identical to the method-of-
moments estimator                .

• This is often, but not always, the case.

• When it happens, the estimator is sure to be 
a good one! 

Numerical example of ML 
estimator

• Suppose out of  n=20  coin tosses, 12 tosses 
were heads.

• Then the maximum likelihood estimate is 
the same as the method-of-moments 
estimate :

Numerical example of ML 
estimator (cont’d)

• But wait!  Let’s check graphically whether 
0.6 really maximizes the likelihood function 
in this case.

• In this case, the likelihood function is:
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GOOD ESTIMATORS

Numerical example of ML 
estimator (cont’d)

What’s so great about ML 
estimators?

• Maximum likelihood estimators are almost 
always
• Consistent.

• Asymptotically normal.

• Also, if they are unbiased, ML estimators 
are always minimum-variance unbiased (or 
“best unbiased” or “efficient”).

Conclusions

• The _______________________ principle 
proposes equating sample moments with 
true (or “population”) moments.

• The _______________________ principle 
proposes substituting data into the joint 
density function and finding the values of 
the unknown parameters that maximize this 
“likelihood function.”
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STANDARD ERRORS

•What is the standard error of an estimator 
or estimate?
•How can it be computed for an estimator 
like the sample mean?

Limitations of point estimates

• A particular estimate, by itself, is not convincing 
unless we have some measure of its precision.

• Although population parameters are __________, 
estimates __________ from sample to sample 
because of sampling error.

• For example, if we are sampling hourly wages of 
workers in Des Moines, one sample might yield a 
sample mean of $12.35, another a sample mean of 
$14.07.

Variance and standard deviation of 
estimators

• Estimators are themselves random variables 
because they are computed from random 
samples.

• A natural measure of precision is thus the 
variance of the estimator.

• Another is the square root of the variance:  
the standard deviation of the estimator.

Low variance or standard deviation 
is a desirable property

• If one estimator has lower variance than another, 
then its distribution is bunched more tightly.

• An estimator with lower variance (or standard 
deviation) is more precise.

Definition of standard error

• Usually the variance and standard deviation of an 
estimator depend on the unknown population 
parameters we are trying to estimate.

• So the true variance and standard deviation of the 
estimator are ___________________.

• But they can be estimated.

• The estimated standard deviation is called the
_____________________ (SE).

An important distinction

• Here, we do not want an estimate of the 
population standard deviation—that is, the 
standard deviation of a single observation.

• Instead we want an estimate of the standard 
deviation of our estimator, a formula based 
on all observations in our sample.

• But the former will usually help us find the 
latter.
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Application:  the sample mean from 
a normal distribution

• Suppose we have a random sample of   n
observations from a normal population with 
unknown true population mean   and unknown 
true population variance  2 .

• We want to use the sample mean to estimate  :

• Suppose we also want to calculate the standard 
error of           to measure its precision.

Variance of the sample mean

• Using the theoretical properties of variance, we 
know that:

• Moreover, if the observations are uncorrelated, the 
variance of the sum is the sum of the variances:

Standard deviation of the 
sample mean

• Because the standard deviation is just the 
square root of the variance,

• But this depends on  2, which is unknown.

Using an estimate of the true 
population variance

• We compute SE(     )  by replacing the unknown 
true population  2 with its estimate in the 
formula for SD(    ).

• A good choice for an estimate of the unknown  2

of a normal population is the unbiased estimate

Standard error for the sample mean 
from a normal distribution

• So the standard error of      from a normal 
population is given by:

where

Example:  Standard error for the sample 
mean from a normal distribution

• Suppose we have a sample of heights of 
n=50 persons, measured in centimeters.

• We have computed
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Example:  Standard error for the sample 
mean from a normal distribution (cont’d)

• The unbiased estimator of the sample 
variance is

• So the standard error of the sample mean is

Standard error for the sample mean 
from a non-normal distribution

• Often we work with data whose population 
distribution is not normal.

• Examples:
• Income (non-negative, right-skewed).

• Family size (discrete).

• Opinion polls (yes-no).

The normal distribution is special 
and does not fit all data

• Recall that the normal distribution is continuous 
and symmetric, with bell-shaped density function.

• Normal random variables can take any value on 
the entire real line.

Example of non-normal population 
distribution:  family income

• Suppose we are investigating family income, 
where the parameter of interest is average 
household income.

• But household income cannot be normally-
distributed because
• income cannot be negative.
• the population distribution of income is not 

symmetric.  It is ______________ to the right 
because a few households have very high 
income.

Another example of non-normal 
population distribution:  family size

• Suppose we are investigating family size, where 
the parameter of interest is the mean number of 
children in a family.

• But family size cannot be normally-distributed 
because
• the number of children in a family must be a 

nonnegative whole number: 0, 1, 2, 3, etc.
• this is obviously a _______________ random 

variable, bounded at zero.

Another example of non-normal 
population distribution:  yes-no opinions

• Suppose we are investigating public opinion, 
where the parameter of interest is the fraction of 
the population that approves of the president.

• But opinion data cannot be normally-distributed 
because

• opinion is either yes (X=1) or no (X=0).

• this is a Bernoulli random variable.
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Exact finite-sample standard errors  
for non-normal populations

• In principle, standard errors can be 
constructed for any distribution.

• However, exact finite-sample formulas for 
standard errors can be very complicated if 
the population distribution is not normal.

• Moreover, if we are not sure of the 
underlying distribution, an exact finite-
sample formula cannot be found.

Asymptotic (“large sample”) 
standard errors

• An easier approach is possible if the sample 
is large.

• We use the same basic formula,

• But then we can use any consistent 
estimator for the population variance.

Consistent estimators for the 
population variance

• Consistent estimators for any population 
variance include

Consistent estimators for the population 
variance for Bernoulli random variables

• For yes-no data (like opinion polls) then the 
following is often used:

where     = m/n, that is, the number of yeses 
divided by the total number of responses.

Example:  Standard error for the sample 
mean from a Bernoulli distribution

• Suppose we have a sample of opinions 
(yes/no) of n=50 persons.

• The number of people saying “yes” is 
m=32, so the sample mean    = m/n =

• So

• So the asymptotic standard error of the 
sample mean is

Interpreting the standard error

• The larger the standard error, the _______ precise 
is the estimator (in the preceding example, the 
sample mean).

• Honesty in research requires that whenever an 
estimate is reported, its standard error should be 
reported, too.

• Of course, the value of the standard error is itself 
computed from the data, so it will vary from 
sample to sample, just like the estimator.
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Conclusions

• All estimators are subject to ________________.

• Any estimate should therefore be accompanied by 
a measure of its ______________.

• A natural measure of precision is the standard 
deviation of the estimator, but usually this is 
______________.

• The standard error is an ____________ of the true 
standard deviation of an estimator.
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CONFIDENCE INTERVALS

•What are confidence intervals?
•What is the formula for the CI for 
the mean of a normal distribution?
•What is the formula for the CI for 
the mean of an arbitrary distribution?

Limitations of point estimators

• We cannot estimate the true population 
parameter exactly if we have only a sample.

• Any estimator is subject to sampling error, 
varying randomly from sample to sample.

• For example, if we are sampling household 
incomes in Iowa, one sample might yield a 
sample mean of $39,150, another a sample 
mean of $46,400.

Measuring the precision of an 
estimator

• So an estimate, by itself, tells us little about 
the true population parameter unless we 
known how precise that estimate is.

• One measure of precision is the standard 
error of the estimator, discussed earlier.

• A more elaborate measure of precision is 
the confidence interval (CI), discussed here.

Bounding the true value

• We cannot know the true population 
parameter’s value exactly.

• But it would be helpful if we could at least 
bound the true population parameter.

• For example, if we could at least say “the 
true mean income of Iowa households is 
between $41,500 and $42,250.”

Bounds are necessarily random

• Can we bound the true population 
parameter for sure?

• ______! Any bounds we construct must be 
calculated from the sample, so they must be 
subject to random sampling variation, too.

• So the best we can do is construct bounds 
that probably contain the true population 
parameter—that is, confidence intervals.

Formal definition of 
confidence interval (CI)

• Let   denote some level of confidence, like 
80%, 90%, 95%, or 99%.

• Then a   confidence interval is a pair of 
estimators—call them     and      —that 
bound the unknown true population 
parameter with probability   :
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Confidence interval for the mean of 
a normal distribution 

• Suppose we have a random sample of 20 
observations from a normal distribution 
with unknown population mean   and 
unknown population variance  .

• We are using the sample mean       to 
estimate the true population mean    but 
we would like also to construct a 95% CI 
for  .

Confidence interval for the mean of 
a normal distribution (cont’d)

• It can be shown (see a mathematical 
statistics book) that the following 
expression, a random variable, follows a  t
distribution with 19 degrees of freedom:

where 

Using the  t table

• Open your textbook to the table of the t
distribution in the back.  Focus on the 2-tailed 
probabilities.

• Depending on the format of the table, it shows 
that, if W ~ t(19), then either
Prob {|W| > 2.093} = 0.05     or
Prob {|W| < 2.093} = 0.95 .

0-2.093 2.093

From table values to confidence 
interval

• Here, W =

• We now use the values from the table, and 
the formula for W, to derive formally the 
formula for the confidence interval. 

Formal derivation of the formula for 
the 95% confidence interval (CI)

Formula for the 95% CI
with 20 observations

• Bottom line:  for a random sample of 20 
observations from a normal distribution, the 
95% CI for the mean is

where 
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Other levels of confidence

• The same  t table shows that, if W ~ t(19), 
Prob {|W| < 1.729} = 0.90  and
Prob {|W| < 2.861} = 0.99  .

• So for a 90% CI, replace “2.093” with 
“_________” in the formula.

• For an 99% CI, replace “2.093” with 
“_________.”

Numerical example 1

• Suppose we have 20 observations from a 
normal distribution.

• Suppose the sample mean is      =  12.84 and 
the standard error is  SE(    ) = 0.7.

• Then the 95% CI is  12.84 + 1.4651

• The 90% CI is  12.84 + 1.2103

• The 99% CI is  12.84 + 2.0027

Numerical example 1 (cont’d)

• Note that the higher the confidence, the 
___________ the interval.

• Makes intuitive sense:  to be more confident 
you have “captured” the unknown 
parameter, you must cast a wider net.

Other sample sizes

• If the sample mean is computed from a 
random sample of  n  observations from a 
normal distribution, then the following 
expression, a random variable, follows a  t
distribution with  (n-1)  degrees of freedom:

where 

General formula for the CI of the mean 
from sample of  n  observations

• So with a random sample of  n  observations 
from a normal distribution, the 95% CI for 
the mean is

General formula for the CI of the mean 
from sample of  n  observations (cont’d)

• Here, 

and the constant  c is taken from the  t
table with  (n-1)  degrees of freedom and 
the desired level of confidence.
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Numerical example 2

• Suppose we have 10 observations on 
heights of Drake students.

• Suppose the sample mean is 175 
centimeters, and the standard error of the 
sample mean is 7 centimeters.

Numerical example 2 (cont’d)

• For n=10, the degrees of freedom = ______.

• Consulting the  t table, we see that

• for 90% confidence,  c = _______.

• for 95% confidence,  c = _______.

• for 99% confidence,  c = _______.

Numerical example 2 (cont’d)

• 90% CI = 175  1.833 (7) = 175  12.831
= (__________,___________) centimeters.

• 95% CI = 175  2.262 (7) = 175  15.834
= (__________,___________) centimeters.

• 99% CI = 175  3.250 (7) = 175  22.75
= (__________,___________) centimeters.

Other parameters

• It is also mathematically possible to 
construct confidence intervals for  2.

• These are usually of less interest so not 
discussed here.

Confidence intervals for non-normal 
population distributions

• In many settings, the population distribution 
is definitely not normal.
• Family size (discrete, not continuous).

• Opinion polls (yes-no).

• Income (non-negative, skewed to the right)

• Yet we may still want to compute a 
confidence interval for the mean (or some 
other parameter).  How to do this?

Confidence interval for the mean of 
an arbitrary distribution

• Suppose we have a random sample of  n  
observations from an arbitrary distribution 
with unknown population mean   and 
unknown population variance  .

• Suppose we wish to construct a 95% 
confidence interval for the population mean.

• Let       denote the sample mean.  
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Use the asymptotic distribution of 
the estimator

• From the central limit theorem we know that if n 
is large,

• Here,             denotes the asymptotic standard 
error.  Often the following is used:

Using the standard normal table

• From a table of the standard normal 
distribution (or the bottom () row of a t
table) we see that if Z ~ N(0,1),
Prob {|Z| < 1.96} = 0.95 .

0-1.96 1.96

Deriving the formula for the 
asymptotic CI

Formula for the 95% asymptotic 
confidence interval

• So the 95% asymptotic CI for the mean is 

Other levels of confidence

• The same standard normal table shows that, 
if Z ~ N(0,1), 
Prob {|Z| < 1.645} = 0.90  and
Prob {|Z| < 2.576} = 0.99  .

• So for a 90% CI, replace “1.96” with 
“________” in the formula.

• For an 99% CI, replace “1.96” with 
“________.”

Numerical example 3

• Suppose we have polled 500 people for 
their opinion on some topic.

• We obtain 280 “yes” answers (x=1) and 220 
“no” answers (x=0).

• Our estimate of the unknown fraction “yes” 
in the larger population is the fraction in our 
sample:
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Numerical example 3 (cont’d)

• How precise is this estimate?

• Variance of a Bernoulli random variable = 
p(1-p), so a consistent estimate of the 
unknown population variance =

• Asymptotic standard error =  

Numerical example 3 (cont’d)

• 90% CI = 0.56  1.645 (0.0222) = 0.56  0.0365
= (__________,___________).

• 95% CI = 0.56  1.96 (0.0222) = 0.56  0.0435
= (__________,___________).

• 99% CI = 0.56  2.576 (0.0222) = 0.56  0.0572
= (__________,___________).

The meaning of “confidence” 

• The level of confidence is the probability that the 
formula encloses the true parameter, when the 
same formula is applied in repeated samples.

• In repeated samples, a 95% CI formula encloses 
the true parameter value __________ of the time.

• Of course, particular values of a CI computed 
from a particular sample are numbers, not random 
variables.

What is the source of randomness? 

• Which is random—the true population 
parameter or the confidence interval?

• In classical statistics, the true population 
parameter is assumed __________, though 
unknown.  It is NOT random.

• By contrast, the CI is a formula using the 
data in the sample, so its value varies 
____________ from sample to sample.

Conclusions

• A   confidence interval is a pair of estimators 
that probably bound the unknown true population 
parameter, with probability .

• Sampling from a normal distribution, the CI for 
the mean is                                where  c is from 
the  t table with (______) DOF.

• Sampling from an arbitrary distribution, the same 
formula is used, but with the asymptotic standard 
error, and  c taken from _______________ table. 
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BASIC CONCEPTS OF 
HYPOTHESIS TESTS

•What is a statistical hypothesis test?

•What do “power” and “size” mean in 
statistics?

Key values of parameters

• In many settings, a key value of an unknown 
parameter is economically important.

• Example from microeconomics:
• Suppose we are estimating the price elasticity 

of demand for cigarettes.  Call it  .

• The value =0 is key because it implies that 
cigarette buyers do not respond to price.

Key values of parameters (cont’d)

• Another example from microeconomics:
• Suppose we are estimating the returns to scale 

parameter (the sum of the exponents in a Cobb-
Douglas production function) for an industry.  
Call it  .

• The value =1 is key because it implies 
constant returns to scale.  Large firms have no 
advantage over small firms so the industry has 
no tendency to consolidate into monopoly.

Key values of parameters (cont’d)

• Example from macroeconomics:
• Suppose we are estimating the effect of 

inflation on unemployment (the reciprocal of 
the slope of the Phillips curve).  Call it  .

• The value =0 is key because it implies a 
“vertical Phillips curve”:  no tradeoff between 
inflation and unemployment.

Key values of parameters (cont’d)

• Another example from macroeconomics
• Suppose we are estimating the slope of the 

consumption function, the marginal propensity 
to consume (MPC).

• The value =1 is key because if the MPC = 1 
then the multiplier is not a meaningful concept.

Testing a key value

• If a key value is economically important, we may 
want to know whether or not the data agree with 
that key value.

• But estimates almost never equal the true value 
exactly, due to sampling error, so we cannot base 
our decision on whether our estimate equals the 
key value exactly.

• Rather, we must base our decision whether our 
estimate is “close” to the key value.
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Definition of hypothesis test

• A decision rule, based on the data, that permits 
one to choose between two hypotheses about an 
unknown parameter  .

• The null hypothesis (H0) supposes that the true 
unknown parameter  equals some key value (say, 
zero or one).

• The alternative hypothesis (H1) supposes that the 
true unknown parameter  lies in some range of 
alternative plausible values.

Two-sided alternatives

• Sometimes the range of alternative plausible 
values is greater or less than the key value.

• Example:  The returns-to-scale parameter in 
and industry might plausibly be greater or 
less than one.
• If  > 1, there are increasing returns to scale.

• If  < 1, there are decreasing returns to scale.

One-sided alternatives

• Sometimes the range of alternative plausible 
values lies only on one side of the key 
value.  Examples:
• The elasticity of demand cannot be _________, 

even for cigarettes.

• The MPC cannot be greater than __________.

• The effect of inflation on unemployment cannot 
be ______________.

Components of a hypothesis test

• Test statistic: a formula to be computed 
from data.  Related to, but not the same as, 
the parameter of interest.

• Critical region: a range of possible values 
of the test statistic which indicate the null 
hypothesis (H0) should be rejected.

• Boundaries of the critical region are called 
critical points.

Rejecting the null hypothesis

• If the test statistic falls in the critical region, we 
reject the null hypothesis (H0).

• Thus the critical region is sometimes called the 
region of rejection.

• If the alternative is two-sided, there may be two 
critical regions (or regions of rejection).

Region of 
rejection of 

H0

Region of 
acceptance 

of H0

Region of 
rejection of 

H0

Accepting the null hypothesis?

• If the test statistic does not fall in the critical 
region, some people say the test statistic falls in 
the region of acceptance and that we accept the 
null hypothesis.

• However, this terminology is perhaps misleading.
• Often the test statistic falls outside the critical 

region just because we have too few 
observations.

• Better terminology might be to say we cannot 
reject the null hypothesis.
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Errors in hypothesis tests

• Test statistics are computed from data in a 
random sample.

• Hence test statistics are random variables.

• Sometimes they accidentally land in the 
critical region, even if H0 is true.

• Sometimes they accidentally fall outside the 
critical region, even if H0 is false.

Possible outcomes

Correct hypothesis in reality

Decision 
indicated 
by test

H0 H1

H0

H1

No error

No error

Type II error:
fails to reject null 
when it is false.

Type I error:
Rejects null 

when it is true.

Probabilities of errors

• Size (or significance) of a test = probability 
of a Type I error, of rejecting H0 when it is 
really true.

• Power of a test = probability of rejecting H0

when it is false.

• A good test has low __________________ 
and high _____________.

Power function

• Usually the power of a test depends on the 
particular value taken by the parameter, 
among possible alternative values.

• Power function = probability of rejecting 
H0, as a function of the true value of the 
parameter.

• By definition, at the hypothesized value of 
the parameter, power function = size of test.

Example of power function
for a two-sided test

The size of this test is ____________.

Hypothesized 
value

n=10

Shape of power function

• The power function usually rises as true 
value differs from hypothesized value.

• Examples on previous slide:
• If the true value of the parameter is 1.2, the test  

rejects the null hypothesis over 95% of the 
time.

• But if the true value of the parameter is -0.2, the 
test rejects the null hypothesis only 10% of the 
time.
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Shape of power function (cont’d)
We can raise the power function (except at the 

hypothesized value) if we increase the number of 
observations.

Power function of the ideal test
If we had an infinite number of observations, we 

could construct the ideal test:  never rejects H0 when 
it is true, always rejects H0 when it is false.  

A tradeoff between size and power
With a fixed number of observations, we can only 

increase the power of the test if we also 
simultaneously increase the size.

n=10

Most powerful tests

• A good test should have low size and high power 
function away from the hypothesized value.

• But for a given number of observations, there is a 
tradeoff between reducing size and increasing 
power.

• A test that maximizes power for a specified size 
(say, 5%) is called the most powerful test of that 
size.

• Tests presented in textbooks have usually been 
proven mathematically to be most powerful tests.

Conclusions

• A hypothesis test is a decision rule between a
___________ hypothesis (H0) that a parameter 
equals a particular key value and an ___________ 
hypothesis (H1) that it equals some other value.

• The probability that the test mistakenly rejects H0
is called the __________ of the test.

• The probability that the test correctly rejects H0 is 
called the __________ of the test.

• A good test has low ________ and high _______.
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TESTING THE MEAN 
OF A DISTRIBUTION

•How can we test a hypothesis about the 
mean of a normal distribution?
•How can we test a hypothesis about the 
mean of an arbitrary distribution?

Testing the mean of a normal 
distribution

• Suppose we have a random sample of  20  
observations from a population that we are 
(for some reason) sure is normally-
distributed.

• However, we are unsure about the true 
population mean  .

• We wish to test the hypothesis that  equals 
some key value—say, 5.

The hypotheses

• Our null hypothesis is thus:
H0:  = 5.

• Suppose that the range of alternative 
plausible values of   includes values both 
greater than or less than  5.

• The alternative hypothesis is thus:
H1:   5.

Distribution of the test statistic

• The assumption that our sample is taken from a 
normally-distributed population implies the 
following useful fact.

• It can be shown (see a mathematical statistics 
book) that the formula below, a random variable, 
follows a  t distribution with 19 degrees of 
freedom:

where 

Distribution of the test statistic

• A test statistic must be computable from data.  
Since we do not know ,  we cannot use the 
formula on the previous slide.

• But now replace  by its hypothesized value, 5.

• If the null hypothesis is true, the following test 
statistic, computable from data, follows a  t
distribution with 19 degrees of freedom:

Behavior of the test statistic under 
the null hypothesis  H0:  = 5

• If the true population mean equals 5, then 
W will be scattered in a bell-shaped curve 
centered at zero.

• We should be surprised to find W very far 
from zero.  Finding W far from zero should 
make us doubt the null hypothesis.

0
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Behavior of the test statistic under 
the alternative hypothesis  H1:    5
• If the true population mean does not equal 5, then 

W will be scattered in a bell-shaped curve 
centered at the true population mean minus 5.

• If the true population mean is much larger or 
much smaller than 5, we should expect W to be 
much larger or much smaller than zero.

0 -5

Critical region 
(or region of rejection)

• So the region of acceptance should be ________
to zero, and the region of rejection should be
__________ from zero on _____________ sides.

• How can we find the borders of the critical 
region—the critical _____________?

Region of 
rejection of 

H0

Region of 
acceptance 

of H0

Region of 
rejection of 

H0

0

Using the t table

• Open your textbook to the table of the  t
distribution in the back.  Focus on the 2-tailed 
probabilities.

• Depending on the format of the table, it shows 
that, if W ~ t(19), then either
Prob {|W| > 2.093} = 0.05     or
Prob {|W| < 2.093} = 0.95 .

0-2.093 2.093

Critical points

• It is common to choose a size of 0.05 (5%).
• Recall that “size” means the probability of a Type 

I Error, of rejecting the H0 when it is really true.
• According to the table, if we reject H0 only when 

|W|>2.093, then the size of the test is 0.05.
• So the critical points are ±2.093  .

0-2.093 2.093

Numerical example

• Suppose for our sample of 20 observations, 
we find that

• Then W = (4.1-5)/0.5 = -1.8.

Numerical example (cont’d)

• Since -1.8 falls in the region of acceptance 
for a test of size 0.05 (5%), we _________ 
the null hypothesis.

• Or more properly, we fail to reject the null 
hypothesis.

0-2.093 2.093

Region of 
rejection of 

H0

Region of 
acceptance 

of H0

Region of 
rejection of 

H0
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Other sizes 
(or “levels of significance”)

• The same  t table shows that, if W ~ t(19), 
Prob {|W| > 1.729} = 0.10  and
Prob {|W| > 2.861} = 0.01  .

• So for a test of size 0.10 (10%), the critical 
points are ±__________ instead of ±2.093.

• For a test of size 0.01 (1%), the critical 
points are ±__________ instead of ±2.093.

Test results at other sizes 
(or “levels of significance)

• Our test statistic W = -1.8 falls in the region 
of _____________ for a test of size 0.10.

• It falls in the region of ______________ 
for a test of size 0.01.

• The larger the size, the smaller the region of 
acceptance, and the __________ likely the 
test will reject the null hypothesis.

One-sided alternatives

• Suppose the range of alternative plausible values 
of   includes only positive values.

• Focus on one-tailed probabilities.

• The same  t table shows that
Prob {W > 1.729} = 0.05 .

0 1.729

One-sided alternatives (cont’d)

• Thus we should use the one-tailed test.

• For size = 0.05, there is a single critical 
point 1.729.

0 1.729

One-sided alternatives (cont’d)

• Suppose only the range of alternative plausible 
values of   includes only negative values.

• Then we should again use the one-tailed test, with 
the single critical point -1.729.

0-1.729

General form of t-test

• Suppose we have  n observations from a normal 
population with unknown mean and variance.

• We wish to test the null hypothesis that the true 
population mean equals  b,  that is, H0:  = b.

• We use the test statistic

where 
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General form of t-test (cont’d)

• Under the null hypothesis  H0:  = b, this 
test statistic is distributed as  t with (n-1) 
degrees of freedom.

• For a two-tailed test, there are two ± critical 
points, found on the row of the table with 
(n-1) degrees of freedom, and the column 
with two tails at the desired size 
significance level.

General form of t-test (cont’d)

• For a one-tailed test, there is just one critical 
point, found on the row with (n-1) degrees 
of freedom, and the column with one tail at 
the desired size significance level.

• Use a positive critical point if the alternative 
hypothesis is H1:  > b.

• Use a negative critical point if the 
alternative hypothesis is H1:  < b.

Testing the mean of non-normal 
population distributions

• In many settings, the population distribution 
is definitely not normal.
• Family size (discrete, not continuous).

• Opinion polls (yes-no).

• Income (non-negative, skewed to the right)

• Yet we may still want to test a hypothesis 
about mean.

Asymptotic t-test

• Suppose we have  n observations from an 
arbitrary distribution with unknown mean and 
variance.  Assume  n is a large number.

• We wish to test the null hypothesis that the true 
population mean equals  b,  that is, H0:  = b.

• We use the test statistic

where 

Asymptotic t-test (cont’d)

• Note that              is the asymptotic standard 
error.

• Here,        is any consistent estimator of the 
unknown true population variance  2 .  
Often the following is used.

Using the standard normal table

• From the central limit theorem we know that if n 
is large,

• From a table of the standard normal distribution, 
or the bottom () row of a t table, we see that if 
Z ~ N(0,1),    Prob {|Z| < 1.96} = 0.95 .

0-1.96 1.96
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Critical points for asymptotic t-test 
of size 0.05

• Thus for a two-tailed test, we use critical 
points ±1.96.

• For a one-tailed test, we use a single critical 
point, depending on the alternative 
hypothesis.
• Use +1.645 if  H1:  > b.

• Use -1.645 if  H1:  < b.

Critical points for asymptotic t-test 
of other sizes (or significance levels)

• Critical points for other sizes can be found 
from the same table.

• Size = 0.10
• Two-tailed critical points:  ±1.645 .

• One-tailed critical point:  1.282 or -1.282.

• Size = 0.01
• Two-tailed critical points:  ±2.576 .

• One-tailed critical point:  2.326 or -2.326.

Conclusions

• To test whether the true population mean equals a 
particular value  b,  compute the following test 
statistic:

• If the population is assumed normal, choose 
critical point(s) from the __________ table.

• If the sample is large, regardless of the population 
distribution, choose critical point(s) from the 
_______________________ table.
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P-VALUES

• How are P-values computed?

• What do they tell us?

General idea behind testing 
hypotheses

• Because data are random, any value of the 
test statistic is possible, whether the null 
hypothesis is true or false.

• But we reject the null hypothesis only if the 
value of our test statistic would be very 
_____________ if the null hypothesis were 
true.

• How unusual?

Size (or significance level) of test

• Suppose you choose a size of 0.05.

• That means you have decided to reject the 
null hypothesis if the test statistic is so 
large, it would take this value less than ____ 
percent of the time if the null hypothesis 
were ___________.

Two ways to decide whether to 
reject the null hypothesis

(1) Find the critical point (the boundary of the 
critical region) given your chosen size.  
Then compare the test statistic with the 
critical point.

(2) Directly compute how unusual the value 
of the test statistic is, given the null 
hypothesis.  That is, compute the p-value.  
Then compare it with your chosen size.

Definition

• The p-value of a test statistic = probability 
of obtaining a test statistic equal to or 
greater than the one actually obtained, under 
the null hypothesis.

What the p-value indicates

• The p-value of a test statistic tells us how 
unusual the value of the test statistic is, 
assuming the null hypothesis is true.

actual statistic

p-value
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Example:  chi-square test

• Suppose a test statistic is distributed as chi-
square with DOF=5 under the null 
hypothesis and the value of the statistic 
actually obtained turns out to be 8.7.

• The p-value (computed using the chidist
function in Excel) is  p = 0.1216.

Example:  chi-square test (cont’d)

• Thus, the probability of obtaining a test 
statistic equal to or greater than 8.7, under 
the null hypothesis, is 0.1216.

_______

___________

Example:  chi-square test (cont’d)

• What does this p-value indicate?

• Even if the null hypothesis were true, a 
value of the test statistic greater than or 
equal to 8.7 would still occur _________ % 
of the time—not so unusual!

• If you had chosen a size of 5% or even 
10%, you could __________ reject the null 
hypothesis.

Size versus p-value

• Recall that the size (or significance level) of 
the test is the area to the right of the critical 
point.

size

critical point

What if p-value < size?

• The p-value < size if and only if actual 
statistic > critical point.

• So if p-value < size, ___________ the null 
hypothesis.

p-value

actual statistic

critical point

size

What if p-value > size?

• The p-value > size if and only if actual 
statistic < critical point.

• So if p-value > size,  ___________ (or “fail 
to reject”) the null hypothesis.

p-value

actual statistic critical point

significance
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Example:  chi-square test (cont’d)

• Since the p-value = 0.1216, then the actual 
value of the test statistic must be 
• to the left of the critical point at 10% 

significance.  So we __________ reject the null 
hypothesis at 10%.

• to the right of the critical point at 20% 
significance.  So we __________ reject the null 
hypothesis at 20%.

P-value for two-tailed tests

• p-value of a test statistic = probability of obtaining 
a test statistic as high or higher in absolute value 
than the one actually obtained, under the null 
hypothesis.

p-value

actual statistic

Example:  normal test

• Suppose a test statistic is distributed as 
standard normal under the null hypothesis, 
and the value of the statistic turns out to be 
2.5.

• The two-sided p-value, computed using 
(1-NORMSDIST(2.5))*2 in Excel,  is  
0.0124.

Example:  normal test (cont’d)

• Thus, the probability of obtaining a test statistic 
greater than 2.5 or less than -2.5, under the null 
hypothesis, is 0.0124.

Total area 
= ______

___-___

Example:  normal test (cont’d)

• What does this p-value indicate?

• If the null hypothesis were true, a value of 
the test statistic with an absolute value of 
2.5 or more would only occur _________ % 
of the time—fairly unusual!

• If you had chosen a size of 5% or even 2%, 
you would have to _____________ the null 
hypothesis.

Example:  normal test (cont’d)

• Given that the p-value = 0.0124, we should
• _________________ the null hypothesis at 5% 

significance.

• _________________ the null hypothesis at 2% 
significance.

• _________________ the null hypothesis at 1% 
significance.
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How and why report p-values?

• Calculating p-values is easy when a 
spreadsheet or statistical software is used to 
compute the test statistic.
• Just use built-in function for the cumulative 

probability distribution function.

• Reporting p-values saves the reader from 
having to refer to a table of critical points.

Conclusions

• The p-value of a test statistic = probability 
of obtaining a test statistic ____________ 
than or equal to the one actually obtained, 
under the null hypothesis.

• If p-value < size, ____________ the null 
hypothesis.

• If p-value > size, ____________ (or “fail to 
reject”) the null hypothesis.
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ALGEBRAIC PROPERTIES OF 
LEAST-SQUARES

ALGEBRAIC PROPERTIES OF 
LEAST-SQUARES

• What properties of LS estimates 
must hold regardless of data 
assumptions?

The least-squares principle

• Choose the line that minimizes the sum of 
the squared vertical deviations.

• Find values of 1 and 2 that minimize the 
following objective function:

First-order necessary conditions 
(FONCs) for LS estimates of 1 and 2

(1) Set zero equal to derivative of f(1,2) 
with respect to ß1:

(2) Set zero equal to derivative of f(1,2) 
with respect to ß2:

The least-squares estimators

• The FONCs can be solved to give the least-
squares estimators:

Definition of least-squares fitted 
values and residuals

• LS “fitted value” or 
“predicted value” =

• LS “residual” =

x

y

xi

yi

Rewriting the first-order necessary 
conditions

• We can use the fitted values to simplify 
the FONCs defining the LS estimators for  
1 and 2 :

(1)

(2)
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Algebraic properties

• Using the FONCs and the definitions of 
fitted values and residuals, we can derive 
algebraic properties of LS.

• These properties hold automatically
• no matter what data are used.

• no matter whether our model is right or wrong.

Why algebraic properties are useful

• The fact that these algebraic properties hold tells 
us nothing about whether the LS estimates are 
accurate or useful.

• It just tells us our computer is not broken.
• But these algebraic properties can help us

• check our calculations.  (If the properties do not hold, 
we made an arithmetic mistake!)

• make further calculations.  (Such as the r2 value—see 
below.)

Algebraic property 1

• The sum of the LS fitted values must equal 
the sum of the actual values.

• Proof:  Follows from FONC (1).

Algebraic property 2

• The sum of the LS residuals must equal 
zero.

• Proof:  Follows from FONC (1).

Algebraic property 3

• The sum of the products of the LS residuals 
and the  X’s  must equal zero.

• Proof:  Follows from FONC (2).

Algebraic property 4

• The sum of the products of the LS residuals 
and the LS fitted values must equal zero.

• Proof:  Follows from both FONCs (see next 
slide).
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Proof of property 4 Algebraic property 5

• The sum of the squared deviations of Y 
around its mean must equal the sum of the 
squared LS residuals PLUS the sum of the 
squared deviations of the fitted values 
around the mean of Y.

Proof of property 5 Proof of property 5 (cont’d)

• But the third term is zero because

• So we are left with

Property 5 restated as “sums-of-
squares decomposition”

“Residual sum of 
squares” aka “error 
sum of squares”

+ “explained sum of 
squares” aka
“regression sum of 
squares”

= “total sum of squares.”

Measuring goodness-of-fit

• A natural measure is the fraction of the total 
sum of squares that is explained by the xs.

• This is the R2 value:

𝑅ଶ =
∑ 𝑦ො − 𝑦ത ଶ
ୀଵ

∑ 𝑦 − 𝑦ത ଶ
ୀଵ
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Another definition of R2

• Using property 5, we can find an alternative 
definition of  R2 as

𝑅ଶ =
∑ 𝑦 − 𝑦ത ଶ
ୀଵ − ∑ 𝜀̂

ଶ
ୀଵ

∑ 𝑦 − 𝑦ത ଶ
ୀଵ

Interpreting R2

• Note that  R2 must lie between _________ 
and __________ (by property 5).

• R2 equals one if and only if the residuals 
are all zero—that is, the fit is ___________.

• It can be shown that  R2 is the square of the 
sample correlation between  x  and  y  (or 
between  𝑦ො and  y).

Conclusions

• The sum of the LS fitted values must equal 
the sum of the __________ values of  y.

• The LS residuals, the products of the LS 
residuals with the  x’s, and the products of 
the residuals with the fitted values, must 
each sum to __________.

• The total sum of squares equals the residual 
sum of squares plus the ____________ sum 
of squares.  This motivates the R2 measure.
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FUNDAMENTAL ASSUMPTIONS

FUNDAMENTAL 
ASSUMPTIONS

•What basic statistical assumptions 
do we need to justify least-squares?

Assumptions dictate method

• There are many methods of fitting a line to 
a set of data points.  Examples:
• Least-squares

• Least absolute deviation

• Reverse least-squares

• To decide which method or principle is 
best, we consider why the data are scattered 
around the “true” line.

Data scattered around “true” line

• We assume the “true” 
relationship between x 
and y is given by:
y = 1 + 2 x.

• Here 1, 2 are 
unknown.

• But the observations 
are scattered around 
that true relationship. x

y

Why are the data scattered?

• Perhaps y is not accurately measured.  It 
might be an estimate or an approximation.
• Examples:

• Perhaps other variables influence y besides 
x.
• Examples:

The error term

• In any case, we 
assume the 
observations are 
displaced from the 
true line by a random 
“error term”:
yi = 1 + 2 xi + i,

• Here i is a random 
“error term.”

x

y

xi

yi

1

1+2xi

i

The error term is unobserved

• Unlike  xi and  yi,  the 
i are not observed.

• If  i were observed, 
we could easily find 
the “true” line by 
subtracting:  yi-i !

• The  i are sometimes 
called “latent” random 
variables because they 
are unobserved.

x

y

xi

yi

1

1+2xi

i
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FUNDAMENTAL ASSUMPTIONS

Implications of random error term

• Since 
yi = 1 + 2 xi + i,
yi is thus also random.

• So the  n  
observations (xi,yi) are 
a random sample.

x

y

xi

yi

1

1+2xi

i

Assumption #1:  E(i) = 0

• In other words:
E(yi|xi) = 1 + 2 xi

• Observations tend to 
be scattered “evenly” 
above and below the 
line.

x

y

What if assumption #1 were 
violated, with E(i) > 0?

• Then observations 
tend to be above the 
line.

• LS intercept estimate 
would be biased
___________.

x

y

What if assumption #1 were 
violated, with E(i) < 0?

• Then observations 
tend to be below the 
line.

• LS intercept estimate 
would be biased
___________. 

• But usually the slope 
is of greater interest.

x

y

Assumption #2: E(i|xi) = 0

• This implies 
E(ixi) = 0 .

• If xi is random, then 
also Cov(xi,i) = 
Corr(xi,i) = _____.

x

y

Meaning of 
Assumption #2: E(i|xi) = 0

• The value of the error 
term i is not affected 
by the value of xi.

• All other factors that 
affect yi are 
uncorrelated with xi .

x

y
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FUNDAMENTAL ASSUMPTIONS

What if assumption #2 were 
violated, with Cov(xi,i) > 0?

• xi and i are positively 
correlated.

• Observations tend to 
be above line for large 
xi, but below line for 
small xi.

• LS slope estimate is 
biased ________.

x

y

What if assumption #2 were 
violated, with Cov(xi,i) < 0?

• xi and i are negatively 
correlated.

• Observations tend to 
be below line for large 
xi, but above line for 
small xi.

• LS slope estimate is 
biased __________.

x

y

The “method-of-moments” 
principle

• Set the moments of the sample equal to the 
formulas for the theoretical (or population) 
moments.

• Solve for estimators of the parameters of 
interest.

• Examples:

“Method of Moments” estimation:  
using assumption #1

• By assumption #1, E(i) = 0 , so set 

“Method of Moments” estimation:  
using assumption #2

• By assumption #2, E(ixi) = 0 , so set

“Method of Moments” estimators 
for 1 and 2

• Thus together, assumptions #1 and #2 and 
the “method-of-moments” principle imply 
the following equations:
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FUNDAMENTAL ASSUMPTIONS

Least-squares again!

• Exactly same “normal equations” we 
derived from the least-squares principle!

• Conclude:  Under assumptions #1 and #2, 
least-squares estimators satisfy the 
“method-of-moments principle.”

Conclusions

• Fundamental assumptions are:
• Assumption #1: E(i) = 0.

• Assumption #2: E(i|xi) = 0.

• They imply that the observations are 
scattered evenly above and below the true 
regression line for all values of x.

• They also imply that LS estimators satisfy 
the ________________________ principle.
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PROPERTIES UNDER FUNDAMENTAL 
ASSUMPTIONS

PROPERTIES UNDER 
FUNDAMENTAL 
ASSUMPTIONS

•How can we justify LS using only 
these basic statistical assumptions?

Estimator versus estimate

• Estimator = formula.  Takes different values 
for different samples.
• A random variable.

• Estimate = particular value taken for a 
particular sample.
• An ordinary number.

Least-squares estimates vary 
from sample to sample

Example:  40 samples of 
50 observations each, 
from Current Population 
Survey.

• y = β1 + β2 x, 
where 
y = weekly earnings,
x = years of schooling

Least-squares estimators are 
themselves random variables

• LS estimators 
are functions of the 

random ys (or s) in 
the particular sample.

• have means 
and variances.

• What can we conclude 
about them?

Least-squares estimators are 
unbiased

• Under the fundamental 
assumptions #1 and 
#2, the LS estimators     
are unbiased.

Proof that least-squares slope 
estimator is unbiased

• Recall slope formula:

• Use following fact to simplify this slope 
formula:
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PROPERTIES UNDER FUNDAMENTAL 
ASSUMPTIONS

Proof that least-squares slope 
estimator is unbiased (cont’d)

• Substituting:

Proof that least-squares slope 
estimator is unbiased (cont’d)

• Substituting:

Proof that least-squares slope 
estimator is unbiased (cont’d)

• Simplifying:

• The mean of this expression is:

Proof that least-squares intercept 
estimator is unbiased

• Recall intercept formula:

Variance of least-squares slope 
estimator

Variance of least-squares slope 
estimator (cont’d)
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PROPERTIES UNDER FUNDAMENTAL 
ASSUMPTIONS

Variance of LS estimators under 
Assumptions #1 and #2

• Formula for variance of         is still fairly 
complicated .

• Cannot be simplified without further 
assumptions.

• Similar result can be shown for         . 

Consistency:  definition

• Consistent estimator’s 
distribution bunches 
more and more closely 
around the true value, 
as  n.

• An estimator is 
consistent if its MSE 
=bias2+variance  0, 
as  n.

n=10

Least-squares estimators are 
consistent

• Bias of LS estimators = zero, so we need 
only show that variance approaches zero.

• Sufficient conditions:  i
2 and Cov(i,j) are 

bounded, and the variation of x around its 
mean does not diminish.

• Notation for consistency:

Functions of least-squares 
estimators are also consistent

• An important theorem shows that 
continuous functions of consistent 
estimators are themselves always consistent.

• Application:  LS can be used to estimate 
consistently the x-intercept (-1/2).  

Conclusions

Assuming E(i)=0 and E(i|xi)=0, LS estimators are
• _____________________ (meaning their 

expected values equal the true coefficients).
• _____________________ under modest 

assumptions (meaning their distributions bunch 
more closely around the true coefficients as the 
sample size increases).

However, formulas for variance of LS estimators are 
fairly complicated without further assumptions.
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ADDITIONAL USEFUL 
ASSUMPTIONS

•What additional assumptions do we 
need to gauge the precision of our LS 
estimates?

Less fundamental assumptions

• The following assumptions are not as 
critical as E(i) = 0 and Cov(xi,i) = 0.

• They may not hold in some datasets.

• But if they do hold, they help drastically 
simplify the formula for variance of LS 
estimators.

Assumption #3:  
homoskedasticity

• Var (i) = E(i)2 = 2.

• In other words:
Var (yi|xi) = 2.

• Variance is _______ 
for all observations, 
regardless of x .

• Note:  opposite of 
homoskedasticity is 
“______skedasticity.” x

y

Assumption #3:  
homoskedasticity

• Var (i) = E(i)2 = 2.

• In other words:
Var (yi|xi) = 2.

• Variance is same  _ 
for all observations, 
regardless of x .

• Note:  opposite of 
homoskedasticity is 
“hetero   skedasticity.” x

y

What if assumption #3 did not 
hold?

• Heteroskedasticity.

• In this graph, Var (i) 
_________________
as  x  gets farther from 
its mean.

x

y

What if assumption #3 did not 
hold (cont’d)?

• Heteroskedasticity.

• In this graph, Var (i) 
________________
as  x  gets farther from 
its mean.

x

y
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ADDITIONAL USEFUL ASSUMPTIONS

Assumption #4:
no autocorrelation

• Cov (i, j) = E (i j) = 0, for  i  j.

• Thus error terms for different observations 
are uncorrelated.

• Always satisfied if data come from a 
random sample.

• Usually satisfied for cross-section datasets.

What if assumption #4 did not 
hold?

• Unobserved factors influencing  y  in one 
observation are correlated with those in 
another observation.

• Example:  Cross-section data—neighboring 
states or cities correlated.

• Example:  Time-series data—serial 
correlation. 

Serial correlation, the most common 
kind of autocorrelation

• Serial correlation can be
• positive:  Cov (t, t-1) > 0.

• or negative: Cov (t, t-1) < 0.

• Positive serial correlation means if  t will 
tend to have the ____________ sign as  t-1.

• Negative serial correlation means if  t will 
tend to have the ____________ sign as  t-1.

Examples of serial correlation

t

t

Example of no serial correlation

t

Conclusions

• Additional useful assumptions are:
• Assumption #3:  Var (i) = 2

(__________________________).

• Assumption #4:  Cov (i,j) = 0 
(no ________________________).

• Assumptions #1 through #4 are sometimes 
called “Gauss-Markov assumptions.”
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PROPERTIES UNDER ADDITIONAL 
ASSUMPTIONS

PROPERTIES UNDER 
ADDITIONAL ASSUMPTIONS

•What do the additional assumptions 
of homoskedasticity and no 
autocorrelation buy us?

Additional assumptions yield 
additional properties

• Under these additional assumptions:

• Assumption #3: (homoskedasticity).

• Assumption #4: (no autocorrelation).

can drastically simplify the formula for variance 
of LS estimators.

• Can also show additional useful properties of LS:

• Gauss-Markov theorem

• asymptotic normality.

Variance of least-squares 
estimator for slope

Implications of no 
autocorrelation

Implications of homoskedasticity
Formulas for the true variances 
and covariance of LS estimators
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PROPERTIES UNDER ADDITIONAL 
ASSUMPTIONS

These variance formulas show that the greater 
the variance of the error term (2) ...

• … the _____________ the variances of the 
least-squares estimators.

y

x

y

x

High 2 Low 2

These variance formulas also show that the 
greater the variation in x around its sample 

mean ...

• … the _____________ the variance of the 
least-squares estimators.

y

x

y

x

High variation in x Low variation in x

These variance formulas also show that 
if the sample mean of x is positive...

• … the slope and 
intercept estimators 
are _______________ 
correlated with each 
other.

y

x

Estimating the variance of the 
error term

• The true value of  2 is unknown.  So these 
formulas cannot be applied directly.

• But an unbiased estimator of  2 is given 
by:

Estimating the variances and  
covariance of LS estimators Standard errors of LS estimators

• Estimates of the standard deviations of the 
LS estimators are given by:
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PROPERTIES UNDER ADDITIONAL 
ASSUMPTIONS

Reporting SEs

• Regression software always computes SEs.

• In research papers reporting results for LS 
regression, SEs are usually reported 
underneath coefficient estimates, in 
parentheses.  Example:

Classes of estimators

Unbiased
estimators

Linear
estimators   

(linear
functions  
of the yi)

The Gauss-Markov theorem

• It can be shown that, given assumptions #1 
through #4, LS estimators have the lowest 
variance of all linear unbiased estimators.

• They are the Best Linear Unbiased 
Estimators (BLUE).

Asymptotically normal

• As the sample size increases, the distribution of 
the LS estimators approaches a normal distribution 
around the true values of the coefficients.

Why asymptotic normality is 
important

• This property allows easy calculation of 
asymptotic confidence intervals and tests.

Conclusions

Assuming homoskedasticity and no 
autocorrelation, LS estimators

• have variances that can be estimated using 
fairly simple formulas.

• are B______ L________ U__________ 
E__________ (Gauss-Markov theorem).

• have asymptotically _______________ 
distributions.
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ASYMPTOTIC CONFIDENCE 
INTERVALS AND TESTS

ASYMPTOTIC CONFIDENCE 
INTERVALS AND TESTS

•How can we calculate confidence 
intervals and tests using only the 
classical assumptions?

Asymptotic distribution of least-
squares estimators

• Under these four assumptions:
• Assumption #1: E(i) = 0.

• Assumption #2: E(i|xi) = 0.

• Assumption #3: homoskedasticity.

• Assumption #4: no autocorrelation.

the distribution of LS estimators is 
asymptotically normal.

Asymptotic distribution of least-
squares estimators (cont’d)

• Formally:

Asymptotic confidence intervals

• We can use the asymptotic normal 
distribution to form confidence intervals for 
the true slope and intercept.

• Sample size should be reasonably large 
(ideally, at least _________ observations).

Formulas for asymptotic 95% 
confidence intervals

Formulas for asymptotic 90% 
confidence intervals
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ASYMPTOTIC CONFIDENCE 
INTERVALS AND TESTS

Example 1

• We are interested in the demand for college 
admission.

• We estimate the relationship between 
between tuition level and enrollment using a 
sample of 100 small colleges:

Example 1 (cont’d)

• The 95% asymptotic confidence interval for 
2 is -0.3 ± 1.96 (0.2) = -0.3 ± _______
or (__________,___________) 

• The 90% asymptotic confidence interval for 
2 is -0.3 ± 1.645 (0.2) = -0.3 ±______
or (__________,___________) 

Asymptotic tests

• We can use the asymptotic normal 
distribution to test hypotheses about the true 
slope and intercept. 

• Sample size should be reasonably large 
(ideally, at least 100 observations).

Calculating t-statistics

• Calculate the t-statistic by subtracting the 
hypothesized value (b) from the estimate, 
and then dividing by the standard error.

Interpreting t-statistics

• If null hypothesis is true, t-statistic has 
asymptotic standard normal distribution and 
its value is usually near zero.

• So reject null hypothesis if its value is far 
from zero (past the critical point) or 
equivalently if its p-value is less than the 
test size.

Example 2

• We want to know whether the demand for 
water increases with income—in economic 
terms, whether water is a normal good.

• We estimate the relationship between 
between income and water consumption 
using a sample of 500 households:
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ASYMPTOTIC CONFIDENCE 
INTERVALS AND TESTS

Example 2 (cont’d)

• We must test whether x has no effect on y, 
that is H0: 2=0 against H1: 20, at 5% 
significance. 

• t-statistic = (0.78-0)/0.33 = _________.

• The critical points at 5% are 1.96.

• So __________ H0 at 5% significance.

• Note:  P-value = Prob{|Z|>2.36} = 0.0091.

Hypothesized value 
different from zero

• Most regression software automatically 
computes t-statistics for  H0:  = 0.

• But sometimes a hypothesized value other 
than b = 0 is of interest.

• Easy to compute with calculator or 
spreadsheet!

Example 3

• Suppose we want to know whether the 
Keynesian marginal propensity to consume 
is exactly one. 

• Using a large macroeconomic data set of 
national income and consumption, we 
estimate the Keynesian consumption 
function:

Example 3 (cont’d)

• We must test H0: 2=1 against H1: 21, at 
5% significance.

• The t-statistic = (0.93-1)/0.04 = _________.

• The critical points at 5% are 1.96.

• So __________ H0 at 5% significance.

• Note:  P-value = Prob{|Z|>1.75} = 0.0802.

Hypotheses about the intercept

• Once in a while, the value of the intercept is 
of interest.

• For example, if intercept is zero, then y is 
proportional to x:   y = 2 x.

• Testing  H0: 1= 0  is straightforward.  This 
t-statistic is automatically computed by 
most regression software.

Example 4

• We are interested in whether firms enjoy 
constant returns to scale—that is, cost 
proportional to output.

• We estimate the relationship between output 
and total cost using a data set on firms:
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ASYMPTOTIC CONFIDENCE 
INTERVALS AND TESTS

Example 4 (continued)

• We must test H0: 1=0 against H1: 10, at 
5% significance.

• t-statistic = (1.53-0)/0.70 = __________.

• The critical points at 5% are 1.96.

• So _____________ H0 at 5% significance.

• Note:  P-value = Prob{|Z|>2.19} = 0.0286.

“Accepting” versus 
“not rejecting” H0

• Possible reasons for a low t-statistic:
(1) Estimated coefficient        is close to 

hypothesized value b.  This supports H0.

(2) Standard error is large. This does _________ 
support H0.  Just indicates ignorance about the 
true value.

• Better to say “cannot reject H0,” rather than 
“accept H0.”

Conclusions

• Assuming homoskedasticity and no 
autocorrelation,
• LS estimators have distributions which are 

asymptotically ___________,

• asymptotic confidence intervals and t-tests can 
be computed using the standard ____________ 
distribution.
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PREDICTION WITH TWO-VARIABLE 
REGRESSION

PREDICTION WITH TWO-
VARIABLE REGRESSION

•How can we predict values of  y  
outside our sample?

What if…?

• An important use of LS estimates is “what if” or 
conditional prediction.

• Example:  we have estimated the relation between 
tax rates and tax revenue.  What if tax rates are set 
at some new level?

• Another example:  we have estimated the relation 
between interest rates and investment.  What if 
interest rates are raised?

Prediction using LS

• Suppose we have estimated a linear 
relationship between x and y using LS.

• Given another value of xn+1 (not in our 
sample) how can we use our estimates to 
predict the corresponding value of yn+1?

LS predictor

• LS predictor  uses 
same formula as 
formula for fitted 
values:

x

y

xn+1

LS fitted line

LS predictor

• LS predictor  uses 
same formula as 
formula for fitted 
values:

x

y

xn+1

LS fitted line
Prediction error

• Predictions are never exactly correct:

.

• True value:    yn+1 = 1 + 2 xn+1 + n+1 .

• LS prediction error:
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PREDICTION WITH TWO-VARIABLE 
REGRESSION

Sources of prediction error

• LS prediction error results from
(1) errors in estimating 1 and 2

(2) the new error term n+1.

LS prediction is unbiased

• Prediction error is inevitable, but the 
expected value of LS prediction error is zero 
because the LS estimators are unbiased.

Variance of prediction error Variance of prediction error (cont’d)

• Formula is complicated.  No need to 
memorize.

• However, do memorize the implications of 
the formula, on the next slide.

• And remember that a large variance of 
prediction error means we _____________ 
predict  yn+1 precisely.

• Small variance means we ________ predict 
yn+1 precisely.

The formula shows that the variance of 
LS prediction error is smaller when...

• ... the sample size (n) is _____________.

• ... the variation of xi in the sample is
____________.

• ... xn+1 is __________ to the sample mean.

• However, the variance of LS prediction 
error can never be less than _____.

LS predictor is best unbiased

• It can be shown that, given assumptions #1 
through #4, the LS predictor has the 
________________ variance of all linear 
unbiased predictors.

• LS predictor is therefore called the 
Best Linear Unbiased Predictor (BLUP).
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PREDICTION WITH TWO-VARIABLE 
REGRESSION

Conclusions

• The least squares predictor for yn+1 uses 
formula for fitted values, applied to xn+1.

• Prediction error arises from estimation 
error, and the new error term n+1.

• Assuming homoskedasticity and no 
autocorrelation, LS predictor for yn+1 is 
B____ L_______ U_______ P_________.
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THE ASSUMPTION THAT ERROR 
TERMS ARE NORMALLY-DISTRIBUTED

THE ASSUMPTION THAT 
ERROR TERMS ARE 

NORMALLY-DISTRIBUTED

•What final assumption is useful for 
small samples?

Small samples

• If the sample size is small (say, less than 
50) the asymptotic distribution of the LS 
estimators is not likely to be an accurate 
approximation.

• But the exact distribution can be derived if 
we make one more assumption.

Assumption #5:  normality

• The error terms follow 
a normal distribution.

• i ~ N(0,2).

• Recall:  normal 
distribution has bell-
shaped density 
function.

x

y

Density function for the error 
term

• The formula for the density function is:

Examples of normal density 
functions (with mean=0)

Given xi,  yi is also normally-
distributed

• Fact:  Linear functions 
of normally-
distributed random 
variables are also 
normally-distributed.

• But yi = 1+2xi+i . 

• So, given xi ,
yi ~ N(1+2xi, 2).

x

y

Part 2:  Two-variable regression Page 2-24

STAT 170 - Regression and Time Series © 2024  William M. Boal



THE ASSUMPTION THAT ERROR 
TERMS ARE NORMALLY-DISTRIBUTED

Density function for the 
dependent variable (yi)

• Substituting  yi - [1 + 2xi]  for  i , we 
derive the conditional density function for 
yi, given xi, as:

Conclusions

• If the sample size is small, it is useful to 
assume the error term  i follows a normal 
distribution with mean zero.

• In that case, the dependent variable yi also 
follows a _______________ distribution
with conditional mean ________________.
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PROPERTIES WITH NORMALLY-
DISTRIBUTED ERROR TERMS

PROPERTIES WITH 
NORMALLY-DISTRIBUTED 

ERROR TERMS

•What does the additional assumption 
of normally-distributed error terms 
buy us?

Additional assumption yields 
additional properties

• Under the additional assumption that the 
error terms  i are normally-distributed, we 
can show additional useful properties of LS:
• LS estimators are ML estimators.
• LS estimators are best in a broader class than 

just linear unbiased estimators.
• LS estimators also follow normal distributions. 

Independence of error terms from 
each other

• If error terms  i are normally distributed, 
they are independent, not just uncorrelated.

• This implies the joint density function of the 
error terms = the product of the individual 
density functions:
f(1, 2, …, n) = f(1) f(2) … f(n) ,
where 

Independence of yi from each 
other

• Similarly  yi are independent, given xi.

• This implies the joint density function of the 
yi= the product of the individual conditional 
density functions:  f(y1, y2,…, yn) 
= f(y1) f(y2) … f(yn) ,  where 

The maximum-likelihood 
principle

• It can be shown that LS estimators 
maximize the joint density function of the 
data, f(y1, y2, …, yn).

• That is, the LS estimators follow the 
principle of ________________________.

• This is important because most ML 
estimators are consistent and, if they are 
unbiased, are best unbiased. 

Lowest variance

• Because they are ML 
estimators, LS have 
the lowest variance of 
ALL unbiased  
coefficient 
estimators (linear
or not).

• They are the Best 
Unbiased 
Estimators (BLUE).

Unbiased
estimators
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PROPERTIES WITH NORMALLY-
DISTRIBUTED ERROR TERMS

Exact distribution of LS 
estimators

• LS estimators are linear functions of the yi

and (by implication) of the error terms i .

• This implies LS estimators are exactly 
normally-distributed, even in small samples.

Standardizing the LS estimators

• In other words, the following functions of 
LS estimators follow standard normal 
distributions:

t-statistics follow  t  distributions 
(exactly)

• It can be shown that if  2 is replaced by its 
unbiased estimator, the resulting 
expressions each have a  t  distribution with  
n-2  degrees of freedom:

and

t-distribution is like standard 
normal, but squashed down a bit

Conclusions

Assuming the error terms are normally-
distributed,

• LS estimators are are B________ 
U__________ E____________ .

• the LS estimators have exactly ________ 
distributions, even in small samples.

• subtracting the true values and dividing by 
the standard errors gives t-statistics with 
________ degrees of freedom.

Part 2:  Two-variable regression Page 2-27

STAT 170 - Regression and Time Series © 2024  William M. Boal



EXACT CONFIDENCE INTERVALS AND TESTS

EXACT CONFIDENCE 
INTERVALS AND TESTS

• How can we calculate confidence 
intervals and tests exploiting the 
assumption that the error term is 
normally-distributed?

t-statistics follow  t  distributions 
(exactly)

• Assuming the error terms  i are normally-
distributed, we can use the t-statistics to 
calculate exact confidence intervals and 
tests that are valid even in small samples.

t-distribution is like standard 
normal, but squashed a bit Exact confidence intervals

• Use confidence point  c  from the t-
distribution with n-2 degrees of freedom, at 
desired confidence level.

Example 1

• We estimate the following demand curve 
for a grocery item using a sample of 15 
cities.

• We want to calculate a confidence interval 
for the coefficient of price.

Example 1 (cont’d)

• Since n=15,  DOF = _______.

• 95% confidence interval:   c = 2.160 so 
confidence interval is -0.3 ± 0.432,  or 
(____________, ___________).

• 90% confidence interval:  c = 1.771 so 
confidence interval is -0.3 ± 0.3542,  or 
(____________, ___________).
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Exact tests using t-statistics

• Calculate the t-statistic by subtracting the 
hypothesized value (b) from the estimate, 
and then dividing by the standard error.

Interpreting t-statistics

• If null hypothesis is true, t-statistic follows  
t distribution exactly with  n-2  degrees of 
freedom and its value is usually near 
_________.

0

Interpreting t-statistics (cont’d)

• So reject null hypothesis if its value is 
______ from zero, past the critical point, or 
equivalently if its p-value is __________.

0

Example 2

• We estimate the relationship between 
income and energy use with a sample of 12 
countries.

• We want to test the null hypothesis that 
income has no effect on energy use.

Example 2 (cont’d)

• We must test H0: 2=0 against H1: 20, at 
5% significance.

• The t-statistic = (0.78-0)/0.33 = -2.36.

• Since  n=12, DOF = _________, and the 
critical points at 5% are  2.228 .

• So ____________ H0 at 5% significance.

• Note:  P-value = Prob{|W|>2.36} = 0.040.

Example 3

• We estimate the relationship between water 
use and the price of water with a sample of 
16 communities.

• The estimated coefficient of price is 
negative, but is this just sampling error?
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Example 3 (cont’d)

• We want to test the null hypothesis that 
price has no effect on water use, against the 
___________-sided alternative that it has a 
negative effect.

• No one believes that price could have a 
positive effect on water use!

Example 3 (cont’d)

• We must test H0: 2=0 against H1: 20, at 
5% significance.

• The t-statistic = (-2.8-0)/1.6 = -1.75.

• Since  n=14, DOF = _________, and the 
one-tailed critical point at 5% is -1.782 .

• So ______________ H0 at 5% significance.

• Note:  P-value = Prob{W<-1.782} = 0.053.

Summary:  What distribution to 
use for CIs and tests

Sample
size

Distribution of
error term

Small
(<50)

Large
(>100)

Normal Unknown

Conclusions

• Assuming the error terms  i are normally-
distributed, we can use the _____________ 
to calculate exact confidence intervals and 
hypothesis tests.

• These are valid even in _________ samples.
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PREDICTION INTERVALS

• How can we calculate prediction 
intervals exploiting the assumption 
that the error term is normally-
distributed?

Conditional prediction

• An important use of LS estimates is “what 
if?” or conditional prediction.

• Given a new value of the  x  variable, we 
may wish to predict the value of  y.

• The LS predictor          simply substitutes 
the new value  xn+1 into the estimated 
equation.

LS predictor is best unbiased

• As mentioned earlier, given assumptions #1 
through #4, the LS predictor has the 
________________ variance of all linear 
unbiased predictors.

• LS predictor is therefore called the 
Best Linear Unbiased Predictor (BLUP).

Example 1

• Suppose we have estimated the following 
equation relating house size (in square feet) 
to selling price (in thousands of dollars) in a 
particular neighborhood:

pricei =    102     +     0.0471 sizei

(13.1)         (0.008)

Example 1:  LS predictor

• Suppose we wish to predict the selling price of a 
house, outside our sample.  So give it a new 
subscript, _________.

• Suppose  sizen+1 = 2000 square feet.

• LS predictor is computed by substituting this 
value in the estimated equation:

pricen+1 = 102 + 0.0471 sizen+1

= 102 + 0.0471 (2000) = _______

Prediction error

• Predictions are never exactly correct:

. 

• As mentioned earlier, LS prediction error 
results from

(1) errors in estimating s.

(2) the new random error term n+1.
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Standard error of prediction

• Standard error of prediction error is an estimate 
of the standard deviation of the prediction error.

• Earlier, a formula was given for the variance of 
the prediction error.

• Inserting  𝜎ොଶ for  2 and taking square root gives 
the standard error of prediction error:

Distribution of prediction error

• Assuming the error terms are normally-
distributed,

Exact prediction intervals

• Use confidence point  c  from the t-
distribution with n-2 degrees of freedom, at 
desired confidence level.

• Formula is similar to confidence interval:

Example 1:  prediction interval

• Assume we have calculated the standard 
error of prediction error at 7.8 .

• Suppose n=25.  Since  DOF = _______, a 
table of the t-distribution gives  c  at 95%  
= 2.069 .

• 95% prediction interval:  
$196.2 ± 2.069 (7.8) = $196.2  ± $16.1,
or  ($__________ , $ __________).

Computing variance of 
prediction error:  a trick

• Formula for the variance of the prediction 
error, given above, is tedious.

• In practice, easier to use the following trick.

Easy way to compute prediction and 
SE of prediction error

(1) Transform the data on the  x  variable by 
subtracting the value of  xn+1.

(2) Re-estimate equation using the 
transformed  x  data.

(3) Use the ________________ (      ) of 
re-estimated equation for prediction.

(4) SE of prediction error =
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Example 1:  computing SE of 
prediction error

• Suppose we wish to predict the selling price 
of a house with  sizen+1 = 2500 square feet.

(1) Transform data: subtract 2500 from the 
size of all the houses in the original data:

~

Example 1:  computing SE of 
prediction error (cont’d)

(2) Re-estimate equation using the 
transformed  x  data:
pricei =    219.8     +     0.0471 sizei

(3.9)            (0.008)

• The coefficient of the  x  variable will ____ 
change, but the intercept ________ change.

~

Example 1:  computing SE of 
prediction error (cont’d)

(3) Use intercept of re-estimated equation for 
prediction:

• By definition,  sizen+1 = 2500 - 2500 = 0, 
so  pricen+1 = 219.8 + 0 = _________.

(4) Compute SE of prediction error:

_______

~

Example 1:  new prediction interval

• Using these results we can quickly compute 
a prediction interval when  sizen+1 = 2500.

• Recall  n=25 and DOF = 23, so  c  at 95%  
= 2.069 .

• 95% prediction interval:  
$219.8 ± 2.069 (6.5) = $219.8  ± $13.45,
or  ($__________ , $ __________).

Conclusions

• Assuming the error terms  i are normally-
distributed, we can use the _____________ 
to calculate exact prediction intervals.

• These are valid even in _________ samples.

• The SE of prediction error is most easily 
calculated from a regression on 
_________________  x  data.
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SUMMARY OF PROPERTIES OF 
LEAST-SQUARES ESTIMATORS

•What is so great about least-squares?

Why do we use LS 
to fit lines to data?

If the data (specifically, 
the unobserved true 
error term) satisfy 
certain assumptions,

then LS has a number of 
very good properties 
that other methods do 
not have.

x

y

Unobserved
true line

Unobserved
true error term

Properties of LS estimatorsAssumptions about data

•LS estimators are unbiased.

•LS estimators are consistent.

Start with these assumptions:

#1:  E(i) = 0

#2:  E(i|xi) = 0

•LS estimators are BLUE.
•Usual formulas for SEs, 
confidence intervals and tests 
are valid for large sample.

Add these assumptions:

#3:  i are homoskedastic

#4:  i are not autocorrelated

•LS estimators are BUE.
•Usual formulas for SEs, 
confidence intervals and tests 
are valid for any size sample.

Add one more assumption:
#5:  i follow a normal 
distribution

Why don’t we use LAD (least 
absolute deviation estimators)?

If assumptions #1 
through #5 hold, 

then LAD has _______ 
variance than LS (it is 
not _________).

In repeated samples, the 
LS estimated lines 
tend to be closer to the 
unobserved true line.

x

y

True line

x

y

True line

LAD estimated lines

LS estimated lines

Why don’t we use reverse LS?

If assumptions #1 and #2 
hold, 

then reverse LS is 
____________ and 
_______________.

x

y

True line

Reverse LS
estimated line

Summary

• We use LS rather than LAD, reverse LS, or some 
other method because, under assumptions #1 
through #5, LS has ____________ properties.

• The stronger the assumptions we are willing to 
make about the data, the ____________ its 
properties compared to other methods.

• If assumptions #1 through #5 do not hold, then LS 
may not be better than other methods.
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ALTERNATIVE 
FUNCTIONAL FORMS

• How can two-variable linear 
regression be used to fit nonlinear 
relationships?

The linear functional form

• Is it realistic to assume 
all relationships are 
straight lines?
y = 1 + 2 x.

x

y

Realism

• In fact, curved 
relationships are 
surely common.

• Examples:

• production with 
diminishing 
marginal product.

• demand with 
constant elasticity. x

y

A trick

• Nonlinear relationships can be fitted by 
transforming x  or  y  before fitting the 
linear regression.

• If  f(.)  and  g(.)  are specified, we can use 
ordinary LS to fit:

f(y) = 1 + 2 g(x).

• If  f(y)  or  g(x)  are nonlinear, then the 
relationship between  x  and  y  is no longer 
linear.

Independent variable in 
reciprocal form

• y = 1 + 2 (1/x).

• dy/dx = - 2 (1/x2).

• As x  infinity, y  _______.

• Interpretation:  Asymptotic to y-axis: ____ 
forms lower bound.

• Note:  Discontinuous at x=0, so  x  data 
should be either strictly positive or strictly 
negative. 

Independent variable in 
reciprocal form:  interpretation

• Asymptotic to y-axis:  1 forms lower 
bound. 

• Example:  Suppose we have  y = 4 + 2(1/x)  
and  x  is strictly positive.

• Then the lower bound for  y  is _______.
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Independent variable in 
reciprocal form: shapes of curves

Independent variable in natural 
logarithm form

• y = 1 + 2 ln(x).

• dy/dx = ________.

• Note:  Must have x>0.

• Asymptotic to __________.

Independent variable in natural 
logarithm form:  interpretation

• A 1% increase in x causes a (2 times 0.01) 
increase in y.

• Example:  Suppose we have  
y = 4 + 0.5 ln(x).

• Then a 5% increase in  x  causes a
__________-unit increase in  y.

Independent variable in natural 
logarithm form:  shapes of curves

Dependent variable in natural 
logarithm form

• ln(y) = 1 + 2 x.

• dy/dx = [dy/dln(y)] [dln(y)/dx]
= __________.

• Note:  Must have y>0.

• Asymptotic to __________.

• Good choice for “human-capital” functions, 
where  y = earnings and  x = education.

Dependent variable in natural 
logarithm form:  interpretation

• Since dy/dx = y 2 , so (dy/y)/dx = 2.

• A 1-unit increase in x causes a (100 2) 
percent increase in y.

• Example:  Suppose we have  
ln(y) = 0.1 + 0.5 x .

• Then a 0.2-unit increase in  x  causes a
________ percent increase in  y.
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Dependent variable in natural 
logarithm form:  shapes of curves 

Both variables in natural 
logarithm form

• ln(y) = 1 + 2 ln(x).

• dy/dx 
= [dy/dln(y)] [dln(y)/dln(x)] [dln(x)/dx] 
= y 2 (1/x) = ____________.

• Note:  Must have y>0 and x>0.

• Good choice for demand functions, supply 
functions, and production functions.

Both variables in natural 
logarithm form:  interpretation

• A 1% increase in x causes a 2 % increase 
in y.

• Example:  Suppose we have
ln(y) = 0.2 + 0.5 ln(x).

• Then a 10 percent increase in  x  causes a
_______ percent increase in  y.

• The ______________ of  y  with respect to  
x  is _______.

Both variables in natural 
logarithm form:  example

Conclusions

• Nonlinear relationships between x and y can 
be fitted by transforming the data before 
estimation by ordinary LS.

• Common transformations include 
reciprocals and natural logarithms.

• If both variables are in logarithms, then 2

is the __________ of y with respect to x.
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INFLUENTIAL 
OBSERVATIONS

• What are “influential 
observations”?

• Why do they merit attention?

Influential observations

• While ordinary least squares uses all of the 
data, some observations have more 
influence on the estimates than others.

• Outlier = observation whose y-value is far 
from the fitted line.

• High leverage point = observation whose x-
value is far from the rest.

Household expenditures data 
with 3 new observations
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Influential observations in the 
household expenditures data

• Observation A is an __________.  It will 
likely increase the sum of squared residuals 
and lower the R-square.

• Observation B is a __________________ 
point.  It will likely raise the R-square.

• Observation C is both a ________________ 
point and an __________.  It will likely 
lower the slope and the R-square.

Actual impact of influential 
observations

R2t (𝜷𝟐)𝜷𝟐
0.4053.5020.182Original data

0.1551.8630.182Original data + A

0.6806.3480.200Original data + B

0.0030.2420.011Original data + C

How to find influential 
observations?

• Before computing LS, always compute 
descriptive statistics—mean, standard 
deviation, minimum and maximum.

• Do a box plot of each variable and the LS 
residuals.

• Print the five largest and five smallest 
values of each variable and the residuals.

• If the sample size is modest, do a scatter 
plot of  y  against  x.
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Why do influential 
observations occur?

• Possibly data error.  Perhaps a zero was 
accidentally omitted (or inserted) when the data 
were collected.  Perhaps a value like 999 really 
denotes “missing data.”

• Possibly the observation does not belong in the 
sample.  Perhaps the “household” is in fact a 
restaurant or a group home.

• Possibly just random variation.  Perhaps the 
household happened to be buying food for a big 
party that week.

What to do about influential 
observations?

• Check for data errors.

• Check whether observation does not belong 
in sample.

• If neither of the above, do nothing.

• It is tempting to omit outliers so as to raise 
R-square, but then sample is no longer 
representative of larger population, so not a 
good idea.

Conclusions

• Influential observations have greater 
influence on regression results than other 
observations.

• _____________ = observation whose y-
value is far from the fitted line.

• ________________________= observation 
whose x-value is far from the rest.
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WHY INCLUDE MORE REGRESSORS?

WHY INCLUDE MORE 
REGRESSORS?

• Including more regressors requires 
more data and more computation.

• Are they worth it?

More regressors

• Two-variable regression is rarely used.

• More common is multiple regression:
y = 1 + 2x2 + 3x3 + ... + KxK +  .

• Whether our purpose is prediction or causal 
inference, including more regressors can 
help us get more useful results.

If our purpose is prediction...

• We want a model that “explains” the yi

well.

• Our model should produce predicted values 
𝑦ො close to the actual values  yi.

• Adding more regressors always improves 
the “fit,” _________ R2 and _________ 𝜎ොଶ.

Prediction example 1:  dependent 
variable is term insurance face

𝝈ෝ𝟐R2Model

1.68
×1012

0.0007β1 + β2 income

1.62
×1012

0.040β1 + β2 income
+ β3 education

1.60
×1012

0.053β1 + β2 income
+ β3 education
+ β4 number in household 

Data from Survey of Consumer Finances.  See Frees (2010) p. 70.  n=500.

Prediction example 2:  dependent 
variable is ln(food expenditure)

𝝈ෝ𝟐R2Model

0.8180.063β1 + β2 ln(income)

0.7350.159β1 + β2 ln(income) 
+ β3 ln(family size) 

0.7230.172β1 + β2 ln(income) 
+ β3 ln(family size) 
+ β4 schooling 

Data from Consumer Expenditure Survey 2022, Diary Survey.  n=5358.

Polynomial functions sometimes 
improve the “fit”

• We can model  y  as a quadratic or possibly 
a cubic function of  x,  if we include  x2 and 
possibly  x3 as additional regressors.
• Linear:  ________________________

• Quadratic:  ______________________

• Cubic:  _________________________

Part 3:  Multiple regression with cross-sectional data Page 3-1

STAT 170 - Regression and Time Series © 2024  William M. Boal



WHY INCLUDE MORE REGRESSORS?

If our purpose is 
causal inference...

• We want to measure the effect of  x  on  y,  
ceteris paribus*.

• That requires measuring what happens to  y  
when  x  changes, while holding constant all 
other factors that might influence  y.

• We want unbiased estimates of the slope 
________________.  R2 is unimportant.

* Latin: other things equal.

Omitting regressors can bias the 
LS slope estimators

• Suppose a variable is omitted (left in the 
error term) that is correlated with  x.

• This violates assumption #2:  E(i|xi)=0 or 
Cov(i, xi)=0.

• LS slope estimator will suffer from 
________________________ bias.

• LS will not measure the true ceteris paribus
effect of  x.

Causal inference example 1:  effect 
of income on food expenditures

• Suppose we want to measure the effect of family 
income (x) on food expenditures (y) using 2-
variable regression.

• Other factors like family size are left in the error 
term  i.

• But family size also affects food expenditures and
is _______________ correlated with income:  big 
families tend to have higher income.

• Thus Cov(i, xi) > 0.

Causal inference example 1:  
omitted variable bias

If Cov(i,xi) > 0, then
• observations tend to 

lie ________ the true 
line when xi is large.

• observations tend to 
lie ________ the true 
line when xi is small.

• LS slope estimator is 
biased ______.

Family income
Fo

od
 e

xp
en

di
tu

re
s

True line

Causal inference example 1:  dependent 
variable is ln(food expenditure)

𝜷𝟐Model

0.189β1 + β2 ln(income)

0.110β1 + β2 ln(income) 
+ β3 ln(family size) 

Data from Consumer Expenditure Survey 2022, Diary Survey.  n=5358.

Causal inference example 2: effect 
of schooling on earnings

• Suppose we want to measure the effect of years of 
schooling (x) on earnings (y) using 2-variable 
regression.

• But work experience also affects earnings and is 
_______________ correlated with schooling.

• Thus Cov(i, xi) < 0.
• This means that i tends to be positive when xi is 

large and negative when xi is small.
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Causal inference example 2:  
omitted variable bias

If Cov(i, xi) < 0, then
• observations tend to 

lie _________ the true 
line when xi is large.

• observations tend to 
lie _________ the true 
line when xi is small.

• LS slope estimator is 
biased __________.

Schooling

E
ar
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ng

s

True line

Causal inference example 2:  
dependent variable is ln(earnings)

𝜷𝟐Model

0.118β1 + β2 schooling

0.121β1 + β2 schooling
+ β3 experience

Data from Current Population Survey 2023.  n=68,855.

Multiple regression can estimate 
ceteris paribus relationships

• If an important regressor, correlated with 
the included regressor, is omitted from the 
regression equation, then the coefficient of 
the included regressor is ____________.

• Including ___________ regressors in the 
equation eliminates bias.

Conclusions

• Two-variable regression is often inadequate.
• For prediction, more regressors can allow 

more precise prediction of  y,  and permit 
________________ functions of  x.

• For causal inference, adding more 
regressors can prevent _________________ 
bias and better estimate ________________ 
effects.
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DEFINITION OF LEAST-
SQUARES WITH TWO 

REGRESSORS

• How can we model a relationship 
between y and two regressors?

• How can we estimate that 
relationship using least-squares? 

Suppose y depends on two 
regressors 

• Then  y = 1 + 2x2 + 3x3 +  , where   is 
a random error term.

• If the xs change, then the resulting change 
in y is given by:

• y = 2  x2 + 3 x3 , assuming the error 
term does not change.

Coefficients are ceteris paribus
effects

• If  x2 changes but  x3 is held constant, 
change in  y  is given by:  y = 2  x2 .
• Example:  If x2 increases by 2 , y 

increases by _______.
• If  x3 changes but  x2 is held constant, 

change in  y  is given by:  y =  x3 . 
• Example:  If x3 decreases by 3 , y 

increases by _______.

Two regressors

• Expected value of y, 
conditional on  x2 and  
x3 , forms a plane:

• E(y|x2,x3) =
1 + 2x2 + 3x3 .

• However, we do not 
observe the 
coefficients (1, 2, 3) 
of the true plane.

x2

y

x3

Observations rarely lie exactly on 
true plane

• Observations are 
triples:  y, x2, x3 .

• Some are above the 
true plane, some are 
below.

x2

y

x3

The least-squares principle

• How can we estimate 
the true plane?

• Using the available 
data, choose the plane 
that minimizes the 
sum of the squared 
vertical deviations 
from it. 

x2

y

x3
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DEFINITION OF LEAST-SQUARES WITH 
TWO REGRESSORS

The least-squares principle (cont’d)

• In other words, find values of 1, 2, and 3

that minimize the following criterion or 
objective function:
f(1, 2, 3) =

Minimizing the function

• Objective function is 
quadratic in 1, 2, or 
3 .

• Its minimum occurs 
where its slope =
_______________

f(1,2, 3)

1, 2, or  3

Solving for LS estimates of
1, 2, and 3

• Set zero equal to derivatives of f(1,2, 3) 
with respect to 1, 2, and 3 :

LS estimators

• These equations are first-order conditions 
(FONCs).

• Values of 1, 2, and 3 that solve them are 
called the “LS estimators.”

• Formulas for 1, 2, and 3 are complicated 
but can be quickly evaluated on computers.

LS fitted values

• Fitted values are 
computed by inserting 
actual values of xi2 and 
xi3 into the LS 
estimated equation:

x2

y

x3
xi3

xi2

LS equation

LS residuals

• Residuals are 
computed as the 
difference between 
actual values of yi in 
the data and the fitted 
values:

x2

y

x3
xi3

xi2

yi
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DEFINITION OF LEAST-SQUARES WITH 
TWO REGRESSORS

• Two regressors influence  y  if the true 
relationship is  y = 1 + 2x2 + 3x3.

• LS estimators are values of  1, 2,  and  3 that 
minimize ∑ 𝑦 − 𝛽ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ   ଶ .

• LS ____________ values are defined as 
𝑦ො = 𝛽መଵ + 𝛽መଶ𝑥ଶ + 𝛽መଷ𝑥ଷ , for  i = 1,...,n.

• LS residuals are defined as 𝜀̂ = ________  

Conclusions
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ALGEBRAIC PROPERTIES OF LEAST-SQUARES 
WITH MULTIPLE REGRESSORS

ALGEBRAIC PROPERTIES OF 
LEAST-SQUARES WITH 

MULTIPLE REGRESSORS

• What properties of LS estimates 
must hold, regardless of data 
assumptions?

Multiple regression

• Suppose  y  is influenced by  (K-1)  xs 
according to the true relationship:
y = 1 + 2x2 + 3x3 + ... + KxK.

• This is a linear equation.

• Change in y is given by

• y = 2 x2 + 3  x3 + ... + K  xK.

Observations rarely lie exactly on 
the true equation

• Actual data will not lie on this equation.  
Some observations will lie above, some 
below.

• Deviations are given by
yi – (1 + 2xi2 + 3xi3 + ... + KxiK).

• Deviations may be positive or negative.

The least-squares principle

• Find values of  1 through K that 
minimize the following quadratic objective 
function:    f(1,K) =

FONCs for 1, ..., K

• Set zero equal to derivatives of  f(1,K) 
with respect to  1 through K :

LS estimators

• Values of  1 through  K that solve these 
FONCs are called the “LS estimators.”

• Formulas are very complicated (unless 
matrix notation is used) but can be quickly 
evaluated on computers.
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ALGEBRAIC PROPERTIES OF LEAST-SQUARES 
WITH MULTIPLE REGRESSORS

Fitted values and residuals

• LS fitted values defined as:

• LS residuals defined as:

Note:  sample means lie exactly on 
fitted line

• According to first FONC, 

• Therefore

Algebraic property 1:  sum of 
actuals = sum of fitted values

• Substituting the definition of the fitted 
values back into the first FONC:

• Thus the sum of the actual values of  y 
equals the sum of the LS fitted values.

Algebraic property 2:  sum of 
residuals = zero

• Alternatively, using the definition of the 
residuals, we can write:

• Thus the sum of LS residuals equals _____.

Algebraic property 3:  sum of product of 
residuals and regressors = zero

• Substituting the definition of the residuals 
into the remaining FONCs:

• Thus the sum of the product of the residual 
and any regressor equals _________.

Algebraic property 4:  sum of product of 
fitted values and residuals = zero
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ALGEBRAIC PROPERTIES OF LEAST-SQUARES 
WITH MULTIPLE REGRESSORS

Algebraic property 5:  sum-of-
squares decomposition

Algebraic property 5:  sum-of-
squares decomposition (cont’d)

• But the third term is zero because:

• So we have the decomposition:

Algebraic property 5:  sum-of-
squares decomposition (cont’d)

“Residual sum of 
squares” or “error sum 
of squares”

+ “explained sum of 
squares” or 
“regression sum of 
squares”

= “total sum of squares.”

Conclusions

• The following sums necessarily = _______:
• LS residuals.

• products of LS residuals and any  x.

• products of LS residuals and fitted values.

• Moreover, total sum of squares of the  y 
=  LS residual sum of squares 
+  LS explained sum of squares.
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“R2” AND “ADJUSTED R2”

R2 AND ADJUSTED R2

• How can we measure the 
“goodness of fit” of a regression?

Using the sum-of-squares 
decomposition for LS

• “Residual sum of 
squares” or “error sum 
of squares”

• + “explained sum of 
squares” or 
“regression sum of 
squares”

• = “total sum of 
squares.”

Measuring goodness-of-fit

• A natural measure is the fraction of the total sum 
of squares that is explained by the xs.

• This is the R2 measure:

• R2 must lie between zero and one if the equation is 
estimated by LS and an intercept is included.

A second definition of R2

• Using the decomposition property, we can 
alternatively rewrite  R2 as

Are these two definitions of R2 

always equal?
• These definitions are equal if 

• the coefficients are estimated by ordinary LS.

• an intercept is included.

• For other methods, or if no intercept is 
included, the first definition may exceed 
one or the second definition may be 
negative!

Interpreting R2

• With a little tedious algebra, it can be 
shown that
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“R2” AND “ADJUSTED R2”

Adding more regressors

• If any new regressor is added to an 
equation, R2 must _________.  Why?

• Compare
y = 1 + 2 x2 + ... + KxK + 
with
y = 1 + 2 x2 + ... + KxK + K+1xK+1 + 

Effect on R2 of adding new 
regressors

• Shorter equation is a constrained version of 
the longer equation, with K+1 = 0.

• General principle:  Constrained 
minimization will ________ reach as low a 
value as unconstrained minimization.

• So LS applied to shorter equation will ____ 
reach as low a sum of squared residuals as 
LS applied to longer equation.

Effect on R2 of adding new 
regressors (cont’d)

• Recall R2 = 1 – (sum of squared residuals / 
total sum of squares).

• Since adding more regressors __________
the sum of squared residuals, it must
_____________ the R2 value

When R2 is not useful

• So R2 will always ____________ when new 
regressors are added, even if the new 
regressors are not really relevant.

• Conclusion:  R2 is _________ useful for 
comparing the fit of equations of different 
length.

• Reason:  R2 tends to favor ____________ 
equation, even if it contains irrelevant 
regressors.

Theil’s adjusted R2

• To level the playing field between long and 
short equations, Henri Theil proposed this 
alternative measure:

• 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ = 1 −
భ

ష಼
∑ ఌො

మ

భ

షభ
∑ ௬ି௬ത మ

• Sometimes abbreviated as 𝑅തଶ .

Effect of adding new regressors 
on Theil’s adjusted R2

• Adding new regressors

• raises K (number of βs including intercept), 
which lowers (n-K), which raises the whole 
second term, which lowers adjusted R2.

• but also lowers the sum of squared residuals, 
which raises adjusted R2.

• So Theil’s adjusted R2 can either ___________
or __________ if new regressors are added.
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“R2” AND “ADJUSTED R2”

Interpreting Theil’s adjusted R2

• We can write Theil’s measure as:

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ = 1 −
భ

ష಼
∑ ఌො

మ

భ

షభ
∑ ௬ି௬ത మ

= 1 −
ఙෝమ

 


• Numerator of second term is unbiased estimator of 
variance of error term.

• Denominator is unbiased estimator of variance of 
Yi .

• So Theil’s adjusted R2 = 1 – (estimated variance 
of error term / total estimated variance of y)

Ordinary R2 versus 
Theil’s adjusted R2

• We can rewrite Theil’s adjusted R2 as:

• 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ = 1 −
ିଵ

ି

∑ ఌො
మ

∑ ௬ି௬ത మ

Expression in parentheses >1 and does not 
appear in the definition of ordinary R2.

• So Theil’s adjusted R2 is always _________ 
than ordinary R2 and can be negative.

Conclusions

• R2 measures the fraction of the variation in 
y  that is explained by the regressors.

• R2 must always lie between ________ and 
________, when the line is fitted by LS.

• But R2 always _________ when more 
regressors are added, even if irrelevant.

• Theil’s adjusted R2 does ______ always rise 
when more regressors are added.
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FUNDAMENTAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

FUNDAMENTAL 
ASSUMPTIONS AND 

RESULTING LS PROPERTIES

• What basic statistical assumptions 
do we need to justify least-squares 
estimation of the multiple-
regression model?

The linear regression model with 
multiple regressors

• y is influenced by (K-1) observed regressor 
variables and an unobserved error term () 
according to the true or population 
relationship:
yi = 1 + 2xi2 + 3xi3 + ... + kxiK +i .

• Here K = number of s, or the number of 
regressors plus 1.

Fundamental assumptions

• Assumption #1:
Mean of error term is zero:  E(i) = 0 .

• Assumption #2:
All regressors are uncorrelated with the 
error term:  E(i |xi1,xi2,…,xiK) = 0 .
• Implies  E(ixij)  and  Cov(ixij)  = 0, for 

j=1,…,K.

Recall the “Method of Moments” 
principle

• Set the moments (means and covariances) 
of the observations equal to the formulas for 
the theoretical moments.

• Solve for estimators of the parameters of 
interest (here, the βs).

“Method of Moments” estimators 
for 1 through k

• By assumption #1, E(i) = 0, so set 

“Method of Moments” estimators for 
the linear regression model (cont’d)

• By assumption #2, E(ixij)  for j=1,…,K, so 
set
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FUNDAMENTAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

“Method of Moments” estimators for 
the linear regression model (cont’d)

• Combining these results,

Method of moments = least squares 
for the linear regression model

• These “method-of-moments” equations are 
___________________ to the FONCs we 
derived from the least-squares principle.

• Conclusion:  Least-squares estimators 
satisfy the “method of moments” principle.

LS estimators are unbiased

• An unbiased estimator has a mean equal to 
the true population value of the unknown 
parameter.

• It can be shown that LS estimators are 
unbiased:

LS estimators are consistent

• A consistent estimator’s distribution 
bunches more and more closely around the 
true population value, as n.

• It can be shown that under assumptions #1 
and #2 (and additional modest assumptions) 
the LS estimators in the multiple regression 
model are consistent:

Variance of LS estimators

• Formulas for variance of LS estimators are 
too complicated to be useful without further 
assumptions.

• They depend on the variances of all  n error 
terms and the  n(n-1) covariances between 
all pairs of error terms.

Conclusions

• Fundamental assumptions are:
• Assumption #1: E(i) = 0.

• Assumption #2: E(i |xi1,xi2,…,xiK) = 0 .

• They imply that LS estimators
• satisfy ___________________ principle.

• are _______________.

• are _______________ (under modest additional 
assumptions).
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ADDITIONAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

ADDITIONAL ASSUMPTIONS 
AND RESULTING LS 

PROPERTIES

• What additional assumptions do we 
need to gauge the precision of our 
LS estimates?

Additional assumptions yield 
additional properties

• Under these additional assumptions:
• Assumption #3:  homoskedasticity.  

Var (i) = E(i)2 = 2.

• Assumption #4:  no autocorrelation.  
Cov (i,j) = E (i j) = 0, for i not = j.

• The same good properties we showed for 
two-variable regression also hold for 
multiple regression.

Variances of LS estimators

• Let  Rj
2 denote the R2 from regressing  xj

on all the other regressors and the intercept.

• Example:  If we are estimating
y = 1 + 2 x2 + 3 x3,   then

R2
2 = the R2 from  x2 = 1 + 2 x3 .

R3
2 = the R2 from  x3 = 1 + 2 x2 .

Variances of LS estimators (cont’d)

• Example:  If we are estimating
y = 1 + 2 x2 + 3 x3 + 4 x4,   then

R2
2 = the R2 from  x2 = 1 + 2x3 + 3x4.

R3
2 = the R2 from  x3 =  1 + 2x2 + 3x4 .

R4
2 = the R2 from  x4 = 1 + 2x2 + 3x3 .

• It can be shown that

𝑉𝑎𝑟 𝛽መ =
𝜎ଶ

1 − 𝑅
ଶ ∑ 𝑥 − �̄�

ଶ

Implications of formula for

• The larger the variance of the error term 
(Var (i) = 2), the _____________ the 
variances of the LS estimators.

• The larger the variation of the xs around 
their sample means, the ____________ the 
variances of the LS estimators.

More implications of formula for

• The larger the sample size, the __________ 
the variances of the LS estimators.

• The more correlated  xj is with the other 
regressors, the higher the  Rj

2 value, and the 
______________ the variance of the LS 
estimator for  j .
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ADDITIONAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

Estimating the variance of the 
error term

• The true value of  2 is unknown.
• An unbiased estimator of  2 is given by:

• Here  n  = sample size,
K = number of s 

= the number of xs plus 1.

Example:  two regressors

• Suppose we are estimating a 3-variable 
regression equation:

y = 1 + 2 x2 + 3 x3 + 
• Then K = _______.

• So the unbiased estimator of  2 is given 
by:

𝜎ොଶ =
1

𝑛 − 3
𝜀̂

ଶ



ୀଵ

Example:  three regressors

• Suppose we are estimating 
y = 1 + 2 x2 + 3 x3 + 4 x4 + 

• Then K = _______.

• So the unbiased estimator of  2 is given 
by:

𝜎ොଶ =
1

𝑛 − 4
𝜀̂

ଶ



ୀଵ

Standard errors of LS estimators

• Estimates of the standard deviations of the 
LS estimators are given by substituting
into the variance formula given above, and 
taking the square root.

• SEs are automatically reported by 
regression software programs (including 
Excel).

Classes of estimators

Unbiased
estimators

Linear
estimators

(linear
functions
of the yi)

The Gauss-Markov theorem

• Given assumptions #1 through #4, LS 
estimators have the lowest variance of all 
linear unbiased estimators.

• They are the B________ L__________ 
U___________ E_____________ (BLUE).
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ADDITIONAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

Asymptotically normal

• As the sample size increases, the distribution of 
the LS estimators approaches a normal distribution 
around the true values of the coefficients.

Why asymptotic normality is 
important

• This property allows calculation of asymptotic 
confidence intervals and tests.

• Sample size should be reasonably large (ideally at 
least 100 observations).

Asymptotic confidence intervals

• We can use the asymptotic normal 
distribution to calculate confidence intervals 
for any of the  coefficients.

• 95% confidence interval =

• 90% confidence interval =

Asymptotic tests of individual 
coefficients

• We can use the asymptotic normal 
distribution to test hypotheses about the true 
coefficients.

• Under H0:  j = b, the usual “t-statistic” is 
asymptotically distributed as standard 
normal:

Computing t-statistics

• In words, the t-statistic = “estimated value minus 
hypothesized value, divided by standard error.”

• t-statistics for the hypothesis that  βj=0  are 
automatically computed by Excel and by statistical 
software programs.

• t-statistics for other hypothesized values of  βj

can easily be computed using a calculator or Excel 
or statistical software.

Computing t-statistics: example

• This model was estimated using 2000 
observations on workers:

ln(wage) = 1 + 2 schooling 
+ 3 work experience + 4 (work experience)2 .

• Excel output:

t StatStandard ErrorCoefficients
58.8900.0854.989Intercept
18.1440.0050.099Schooling
12.1430.0030.040Exper
-11.2340.0001-0.001Expersq
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ADDITIONAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

Computing t-statistics: example 
(cont’d)

• To test the null hypothesis that the 
coefficient of schooling is zero, use the t-
statistic given in the output:  t = 18.144 .

• Since |t| > 1.96, ____________ the null 
hypothesis at 5% significance.

Computing t-statistics: example 
(cont’d)

• To test the null hypothesis that the 
coefficient of schooling is 0.10, compute 
this t-statistic: 

𝑡 =
0.099 − 0.10

0.005
= 9.8

• Since |t| < 1.96, ___________________ the 
null hypothesis at 5% significance.

Prediction

• Suppose we have estimated a linear 
relationship between x and y using LS.

• Given another value of the xn+1 (not in our 
sample) how can we predict the 
corresponding value of yn+1?

• LS predictor uses formula for fitted values:

Prediction error

• By contrast, true but unknown value is
yn+1 = 1 + 2 x2,n+1 +...+ K xK,n+1 + n+1 .

• Difference is prediction error:

LS prediction is unbiased

• Note that prediction error results from 
estimation error and new error term n+1 .

• But the expected value of prediction error is 
zero.

LS predictor is best unbiased

• It can be shown that, given assumptions #1 
through #4, the LS predictor has the lowest 
variance of all linear unbiased predictors.

• LS predictor is B_______ L__________ 
U____________ P____________ (BLUP).
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ADDITIONAL ASSUMPTIONS AND 
RESULTING LS PROPERTIES

Conclusions

Assuming homoskedasticity and no 
autocorrelation, LS estimators

• have variances that can be estimated using 
fairly simple formulas.

• are B______ L________ U___________ 
E__________ (Gauss-Markov theorem).

• have asymptotically _______________ 
distributions.
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THE NORMALITY ASSUMPTION AND 
RESULTING LS PROPERTIES

THE NORMALITY 
ASSUMPTION AND 

RESULTING LS PROPERTIES

•What final assumption is useful for 
small samples?

Small samples

• If the sample size is small (say, less than 
50) the asymptotic distribution of the LS 
estimators is not likely to be an accurate 
approximation.

• But the exact distribution can be derived if 
we make one more assumption.

Assumption #5:  normality

• The error terms follow a normal 
distribution:   i ~ N(0, 2).

• This implies that, given the xi, the yi also 
follow a normal distribution:
yi ~ N(1 + 2xi2 + ... + KxiK ,  2).

Additional assumption yields 
additional properties

• Error terms  i are independent, not just 
uncorrelated.

• LS estimators are “maximum-likelihood” 
(ML) estimators.

• LS estimators are B______ U_________ 
E_____________ , not merely BLUE.

Exact distribution of LS 
estimators

• LS estimators are linear functions of the yi

and (by implication) of the error terms i .

• Thus, LS estimators are exactly normally-
distributed, even in small samples.

t-statistics follow  t distributions 
(exactly)

• If  2 is replaced by its unbiased estimator, 
the resulting expressions each have a  t
distribution with  (n-K)  degrees of freedom.

• Here  K = number of s, or the number of 
xs plus 1.
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THE NORMALITY ASSUMPTION AND 
RESULTING LS PROPERTIES

Exact confidence intervals

• Use confidence point  c  from the  t
distribution with  (n-K)  degrees of freedom, 
at desired confidence level.

• Here,  c  is the value taken from the  t table 
with  (n-K)  degrees of freedom.

Exact tests using  t  statistics

• Under H0:  j = b, the usual “t statistic” is exactly 
distributed as  t , with  (n-K)  degrees of freedom:

• Here, critical point is found in  t table with (n-K)  
degrees of freedom.

Testing all slope coefficients 
simultaneously

• Suppose we wish to test the hypothesis that 
none of the xs have any effect on y.

• Thus in the model
yi = 1 + 2xi2 + ... + KxiK + i ,

we wish to test   H0: 0 = 2 = ... = K

at significance level of, say, 5%.

• Alternative hypothesis is that ___________ 
slope coefficient is nonzero.

A possible approach

• We could check the t-statistic for every 
coefficient, and reject H0 if any t-statistic 
were significant at level 5%. 

• However, this test would have a true 
significance level much greater than 5%.

• Reason:  Probability that at least one t-
statistic is significant when H0 is true is 
much greater than 5%.

Another possible approach

• We could check the t-statistic for every 
coefficient, and reject H0 if all t-statistics 
were significant at level 5%. 

• However, this test would have a true 
significance level much less than 5%.

• Reason:  Probability that all t-statistics are 
significant at the same time when H0 is true 
is much less than 5%.

The right way to test the joint 
hypothesis

• Use the following statistic.

• This statistic follows the “F” distribution, 
with (K-1) DOF in the numerator and (n-K) 
DOF in the denominator. 
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THE NORMALITY ASSUMPTION AND 
RESULTING LS PROPERTIES

“THE”  F  Statistic

• “THE”  F  statistic is large if the fitted 
values vary a lot, compared to the residuals.

• This would occur if the regressors do help 
to explain y.

• So reject H0

if  F  is large.

“THE”  F  statistic:  example

• Suppose the equation
yi = 1 + 2xi2 + 3xi3 + i ,

is estimated on a sample of 25 observations.

• Then (K-1) = DOF in numerator = _____
and (n-K) = DOF in denominator = _____.

• Suppose THE F statistic = 5.5.

• Critical point at 5% = 3.44, so __________
H0 and conclude that some xs affect y.

What if errors are not normally 
distributed?

• THE F-statistic can still be used if the 
sample size is large.

• Its asymptotic critical points, as the sample 
size increases without bound, are usually 
given on the bottom row of the F-table.

Why “THE” F-statistic?

• Other test statistics we will study also 
happen to follow the F distribution.

• But this particular F statistic is arguably the 
most important, and it is computed 
automatically by most regression software.

• So I distinguish it, half in jest, by referring 
to it as “THE F-statistic.”

Conclusions

• If error terms are normally-distributed, LS 
estimators
• are B______ U________ E__________.

• have __________ normal distributions, even in 
small samples.

• Also, t-statistics are __________.

• Finally, THE ______________ can be used 
for joint test of all slope coefficients.
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PREDICTION AND  PREDICTION INTERVALS 
WITH MULTIPLE REGRESSION

PREDICTION AND 
PREDICTION INTERVALS

WITH MULTIPLE REGRESSION

•How can we compute predictions 
and prediction intervals with multiple 
regression.

Conditional prediction

• An important use of LS estimates is “what 
if?” or conditional prediction.

• Given new values of the  x  variables, we 
may wish to predict the value of y.

• The LS predictor for  y  simply substitutes 
the new values of the  x  variables into the 
estimated equation.

• Same formula as for fitted values.

Example 1:  a prediction problem

• Suppose we have estimated the following 
relationship using data on recent college 
graduates:
college GPAi = 1 + 2 ACTi + 3 HSGPAi

• We want to use our results to predict the 
college success of a high school senior who 
has not yet attended college.

Example 1:  LS predictor

• Given new values of  ACTn+1 and   
HSGPAn+1, we want to predict college 
GPAn+1 .

• Subscript  (n+1)  emphasizes these data are 
for a person not in our original sample of  n  
college graduates.

• LS predicted college GPAn+1 =

Definition of LS predictor and 
prediction error

• General formula for LS predictor:

• True value:

• LS prediction error:

Sources of prediction error

• As in two-variable regression, LS prediction 
error in multiple regression results from

(1) errors in estimating s.

(2) the new random error term n+1.

• These two sources of error are uncorrelated 
if the individual we are predicting was not 
in our estimation sample.
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Sources of prediction error (cont’d) LS prediction is unbiased

• Prediction error is inevitable.

• But under assumptions #1 and #2, the 
expected value of LS prediction error is zero 
because the LS estimators are unbiased.

LS predictor is best unbiased

• It can be shown that, under the Gauss-
Markov assumptions #1 through #4, the LS 
predictor has the lowest variance of all 
linear unbiased predictors.

• LS predictor is B_________ L_________ 
U___________ P____________ (BLUP).

Variance of prediction error

• The general formula for the variance of the 
prediction error is rather complicated.

• It depends not only on the variances of the 
LS estimators, but also on their covariances.

• In general, the variance of prediction error 
is _____________, the smaller 2, and the 
closer the  xn+1 are to the mean values of 
the same variables in the estimation sample.

Computing variance of 
prediction error:  a trick

• Advanced software programs can compute the 
variance of prediction error by a simple command.

• But here is a trick that will coax even the crudest 
statistical software (like Excel) to compute the 
variance of prediction error.

(1) Transform the data.

(2) Re-estimate equation on transformed data.

(3) Use re-estimated equation for prediction.

(1) Transform the data

• Subtract the new values of the x’s from all 
the corresponding x’s in the original data.

• That is, create new data as follows.
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(2) Re-estimate equation on   
transformed data

• Estimate

• It can be shown that estimated coefficients 
will be unchanged, except the intercept.

• What will the new intercept be?

(3) Use re-estimated equation for 
prediction

• Note that inserting the new values of  x 
makes all the transformed x’s zero:

(3) Use re-estimated equation for 
prediction (cont’d)

• Since all other terms are zero, the new 
estimated intercept will be the LS predictor:

(3) Use re-estimated equation for 
prediction (cont’d)

• Under assumptions #1 through #4, the 
variance of the LS prediction is thus

• This can be estimated as                         , 
which are automatically computed by 
almost all software.

• In Excel,       is reported as “Residual MS.”

(3) Use re-estimated equation for 
prediction (cont’d)

• Taking the square root of the variance of the 
LS prediction gives:

Standard error of prediction error =

Variance of prediction error 
in large samples

• For reasonably large samples,  SE(     )2 is 
usually much smaller than       .

• Here’s why:  Under assumptions #1 through 
#4, the LS estimators are consistent, so as  n  
increases, SE(      )2  ________.

• But         ______, a constant.

• Thus, variance of prediction error  2.
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Exact prediction interval

• Under assumption #5 (error term normally 
distributed) it can be shown that

where “SEPE” is the standard error of 
prediction error =

Exact prediction interval (cont’d)

• Use confidence point  c  from the t-
distribution with n-K degrees of freedom, at 
desired confidence level:

Example 1:  Transform data

• Suppose we wish to forecast College GPA 
for a high school senior with  ACTn+1=26 
and  HSGPAn+1=3.7 . 

• First we transform original data set:

Example 1:  Re-estimate equation on 
transformed data

• Then we re-estimate the equation using the 
transformed data:

Example 1:  Use re-estimated 
equation for prediction

• Suppose our new estimate of the 
transformed intercept is

• Thus the LS prediction for a high school 
senior with ACT=26 and HSGPA=3.7  is 
college GPA = __________.

• This will be _______________ to the 
prediction using the original equation.

Example 1:  Use re-estimated 
equation for prediction (cont’d)

• Suppose our SE for the transformed 
intercept is                         and our estimate 
of the variance of the error term is

• Then the standard error of prediction error 
(SEPE) is 
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Example 1:  prediction interval

• Suppose there are n=400 individuals in our 
estimation sample.  So DOF= ________
and we can use the bottom row of the t-table 
(DOF=) or standard normal table.

• For a 95% prediction interval,  c=1.96 from 
the table.

• The prediction interval is  3.4 ± 1.96 SEPE
=  3.4 ± 0.392  =  (________,________).

Conclusions

• The LS predictor for yn+1 uses the formula for 
fitted values, applied to the new x’s.

• Under assumptions #1 and #2, it is unbiased.
• Under assumptions #1 through #4, it is the

B______ L_______ U_______ P__________.
• The standard error of prediction error can easily be 

computed by first transforming the data.
• Under assumption #5, the prediction interval can 

be computed using the points from a t-table.
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THE ANALYSIS-OF-
VARIANCE (ANOVA) TABLE

• What do the numbers in the 
ANOVA table mean?

Using the sum-of-squares 
decomposition

“Residual sum of 
squares” or “error sum 
of squares”

+ “explained sum of 
squares” or 
“regression sum of 
squares”

= “total sum of squares.”

Reporting the sums-of-squares 
decomposition

• Most computer programs for least squares 
report the sums-of-squares (“variance”).

• Also report additional information that can 
be used to compute many statistics.

• Numbers are formatted as an “analysis of 
variance” (ANOVA) table.

• Arrangement of rows and columns differs 
across computer programs.

Example of ANOVA table from 
Microsoft Excel

• SS = “sums of squares”

• df = “degrees of freedom”

• MS = “mean squares”

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

The “sums of squares” column

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

The “degrees of freedom” 
column

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

K-1 n-K n-1
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Interpreting the “degrees of 
freedom” column

• Number of observations = n = _____

• Number of s = K = _____

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

The “mean squares” column

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

The unbiased estimate of the 
variance of 

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

Ordinary R2

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

Theil’s adjusted R2

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44

“THE” F statistic

ANOVA df SS          MS
Regression 2 31.40 15.70
Residual 531 117.04 0.22
Total 533 148.44
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Conclusions

• The ANOVA table has eight entries 
reporting

• SS = _______________________

• df = ________________________

• MS = _______________________

• Using these numbers, one can compute the 
estimated variance of  ,  R2, Theil’s
adjusted  R2,  and THE  F  statistic.
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MULTICOLLINEARITY

• What happens if regressors are 
perfectly or almost perfectly 
correlated with each other?

Perfect multicollinearity:  
definition

• One regressor is 
related to one or more 
other regressors 
according to a line:

• x2 = 1 + 2 x3

• x2 = 1 + 2 x3 + 3 x4

• etc.

• In this graph, x2 and x3

are perfectly collinear.
x2

x3

Geometry of perfect 
multicollinearity

• One regressor is 
perfectly correlated 
with one or more 
others. 

• In three-variable case, 
all observations lie in 
a vertical plane.

x2

x3

y

Typical causes of perfect 
multicollinearity

(1) Some regressor never varies in our dataset.
• Example:  We estimate a demand function 

regressing quantity (y) on price (x), but all 
observations have the same price. 

(2) Regressors that are supposed to be distinct 
are related by definition.

Example of perfect 
multicollinearity

• Suppose we estimate a production function, 
relating output to workers and machines. 

• But it turns out that in our dataset each 
machine is always operated by two workers:
workers = 2  x machines.

Another example of perfect 
multicollinearity

• Suppose we estimate a human capital 
equation, relating workers’ pay to 
education, age, and work experience.

• But it turns out that work experience is not 
observed directly in our dataset.  It is 
imputed as follows:
experience = age - education - 6.
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Least squares with 
multicollinearity

• One of the normal equations is now redundant, a 
combination of the others.

• We have only (K-1) distinct equations in K 
unknown s.

Consequences of perfect 
multicollinearity

• LS coefficient estimates ____________
be computed for collinear regressors.

• They are mathematically undefined.

• However, if one of the collinear regressors
is dropped from the equation, the 
coefficients of the non-collinear variables 
________ still be computed.

What will statistical software do 
if there are collinear regressors?

• Most statistical software detects the 
problem and drops one regressor.

• Excel cannot detect the problem and tries to 
estimate all the coefficients.  However,
• standard errors are huge.

• coefficient estimates are often far from 
reasonable.

Is LS the wrong estimation 
method?

• Not necessarily.

• If two regressors always move together, the 
“experiment” is badly designed.

• No sensible estimation method—certainly 
not LAD or reverse LS—could separate the 
effects of the two regressors using only the 
information in the sample.

How can we fix perfect 
multicollinearity?  Three ways

(1) Give up on measuring the effects of 
collinear variables.  Drop one from the 
equation.

(2) Get more and better data, where the 
regressors are not perfectly correlated.

(3) Impose restrictions on the coefficients, 
such as that they sum to a constant.

Imperfect multicollinearity:  
definition

• One regressor is 
approximately related 
to one or more other 
regressors according 
to a line:

• x2 = 1 + 2 x3 + small 
error

• Here, x2 and x3 are 
almost collinear.

x2

x3
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Geometry of imperfect 
multicollinearity

• One regressor is 
closely correlated with 
one or more others. 

• In three-variable case, 
all observations lie 
close to a vertical 
plane.

x2

x3

y

Typical causes of imperfect 
multicollinearity

(1) Some regressor hardly varies in our 
dataset.
• Example:  We estimate a demand function 

regressing quantity (y) on price (x), but most 
observations happen to have the same price. 

(2) Certain regressors tend to move together.

Example of imperfect 
multicollinearity

• Suppose we estimate an aggregate 
production function for the U.S., relating 
output to the labor force (x2) and the capital 
stock (x3), using time-series data.

• Unfortunately, the labor force and the 
capital stock have both grown steadily over 
time, so x2 and x3 are (imperfectly) 
collinear.

Consequences of imperfect 
multicollinearity

• Coefficients for collinear regressors cannot 
be precisely estimated.

• Estimates may even have wrong sign.

• Estimates sensitive to slight changes in data.

• Standard errors are __________ and 
t-statistics are __________.

Are the LS estimates “wrong”?

• Imperfect multicollinearity is _________
a violation of the classical assumptions.

• Classical properties ______________.

• Coefficient estimates of collinear regressors 
are simply imprecise (and the standard 
errors clearly warn us so).

Why are LS estimates imprecise?

• Recall  𝑉𝑎𝑟 𝛽መ =
ఙమ

ଵିோೕ
మ   ∑ ௫ೕି௫̅ೕ

మ
సభ

, 

where  Rj
2 denotes the R2 from regressing  xj on 

all the other regressors and the intercept.

• If xj is closely correlated with other regressors, 
then  Rj

2 is close to one and Var(𝛽መ) explodes.

• So  1 1 − 𝑅
ଶ⁄ is sometimes called the variance 

inflation factor for coefficient 𝛽መ.
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How can we fix imperfect 
multicollinearity?  Three ways

(1) Ignore it if the collinear variables are not 
the focus of the investigation.

(2) If they are the focus, get more and better 
data, where the regressors vary more and 
are not closely correlated.
• Example:  Instead of time-series, use cross-

section data on countries to estimate aggregate 
production function.

How can we fix imperfect 
multicollinearity?  Three ways (cont’d)

(3) Consider whether any restrictions implied 
by economic theory can be assumed and 
imposed.

Conclusions

• Perfect multicollinearity means regressors
are perfectly correlated with each other.
• LS estimates of the coefficients of collinear 

regressors _______________ be computed.

• Imperfect multicollinearity means 
regressors are closely correlated.
• Classical properties of LS still hold but 

coefficient estimates are ________________.
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TESTING HYPOTHESES 
ABOUT COEFFICIENTS

• How can we test hypotheses 
involving multiple slope 
coefficients?

Testing a restriction on a single 
coefficient

• We have already discussed how to test 
hypotheses like  
• H0: 𝛽መଶ = 0 against  H1: 𝛽መଶ ≠ 0

• H0: 𝛽መଶ = 0.10 against  H1: 𝛽መଶ ≠ 0.10 

using t-statistics.

• Each null hypothesis is a ______________ 
on the value of a coefficient.

Testing a single restriction 
involving multiple coefficients

• The same procedure can be used to test a 
restriction on multiple coefficients, such as
(1)  H0: 𝛽መଶ = 𝛽መଷ against  H1: 𝛽መଶ ≠ 𝛽መଷ

(2)  H0: 𝛽መଶ + 𝛽መଷ = 1 against  H1: 𝛽መଶ + 𝛽መଷ ≠ 1

• In principle, these could be tested with t-
statistics like

ఉమିఉయ

ௌா ఉమିఉయ
or    

ఉమାఉయିଵ

ௌா ఉమାఉయ

An easier alternative

• However, computing  𝑆𝐸 𝛽መଶ − 𝛽መଷ or 
𝑆𝐸 𝛽መଶ + 𝛽መଷ is somewhat involved.

• An easier way is to compute an F-statistic 
for the restriction.

• It requires estimating the equation with and 
without the restriction.

Estimating an equation with and 
without a restriction:  example (1)

• Unrestricted equation (H1: 𝛽መଶ ≠ 𝛽መଷ):
consumption = 1 + 2 labor income 
+ 3 capital income + . 

• Restricted equation (H0: 𝛽መଶ = 𝛽መଷ):
earnings = 1

+ 2 (labor income + capital income) + .

Estimating an equation with and 
without a restriction:  example (2)

• Unrestricted equation (H1: 𝛽መଶ + 𝛽መଷ ≠ 1):
ln(output) = 1 + 2 ln(labor) 

+ 3 ln(capital) + . 
• Restricted equation (H0: 𝛽መଶ + 𝛽መଷ = 1):

ln(output) = 1 + (1-3) ln(labor) 
+ 3 ln(capital) +  OR

[ln(output)-ln(labor)] = 1

+ 3 [ln(capital)- ln(labor)] + 
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Comparing the results

• Save the sums of squared residuals from the 
unrestricted and restricted regressions 
(USSR and RSSR).

• Note that necessarily, RSSR ___ USSR.

• If much greater, then the restrictions made 
the fit much worse, and the restrictions 
should be _______________. 

• But how much greater?

Perform the F test of a single 
restriction

• Compute the statistic as  𝐹 =
ோௌௌோିௌௌ

భ

ష಼
  ௌௌோ

where K = number of  βs  in unrestricted equation 
(K=3 in both examples). 

• Find critical point in a table of the F distribution.  

• Here, DOF in numerator = 1 and DOF in 
denominator = n-K.

• Statistical software will often compute the critical 
point and/or the p-value automatically.

Perform the F test of a single 
restriction (cont’d)

• Reject the restriction if F statistic is greater 
than the critical point—that is, if the 
restriction increases the sum of squared 
residuals a lot.

critical point

significance 
level

critical region

Does it matter whether we use a t test or 
an F test on a single restriction?

• Not for a two-sided t test (as in these 
examples).

• It can be shown that the F test statistic of a 
single restriction equals the square of the t 
test statistic.

• Similarly, the critical point for the F test 
equals the square of the critical point for the 
t test.

Testing multiple restrictions on 
coefficients

• Sometimes we may wish to test multiple 
restrictions jointly.

• Example:  we may wish to test whether a 
group of regressors has any effect on y.

• How can we test this type of hypothesis?

• Two test procedures are in wide use:
• general F-test.

• LM test.

Example (3)

• Suppose we estimate an equation intended 
to explain weekly earnings as a function of 
education, work experience, usual weekly 
hours, and job risk:

earnings = 1 + 2 educ + 3 exper
+ 4 hours + 5 risk + .
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How can we test coefficients 
jointly?

• Suppose we wish to test whether the human 
capital variables (educ and exper) are jointly
significant?
• H0:  0 = 2 = 3.

• H1:  Either 2  0  or  3  0  (or both).

• Note that the null hypothesis is actually ___ 
restrictions.

A possible approach

• We could check the t-statistic for every 
coefficient, and reject H0 if either t-statistic 
were significant at level 5%. 

• However, this test would have significance 
level much greater than  5%.

• Reason:  Probability that at least one t-
statistic is significant when H0 is true is 
much greater than 5%.

Another possible approach

• We could check the t-statistic for every 
coefficient, and accept H0 if both t-statistics 
were insignificant at level 5%. 

• However, this test would have a true 
significance level much less than 5%.

• Reason:  Probability that both t-statistics are 
significant at the same time when H0 is true 
is much less than 5%.

The right way to test the joint 
hypothesis

• Estimate the equation with and without the 
regressors in question.

• Unrestricted equation:
earnings = 1 + 2 educ + 3 exper

+ 4 hours + 5 risk + . 
• Restricted equation (assumes 2=3=____):

earnings = 1 + 4 hours + 5 risk + .

Comparing the results

• Save the sums of squared residuals from the 
unrestricted and restricted regressions 
(USSR and RSSR).

• Note that necessarily, RSSR ___ USSR.

• If much greater, then the restrictions made 
the fit much worse, and the restrictions 
should be _______________. 

• But how much greater?

Perform the general F test 
of multiple restrictions

• Compute the statistic as  𝐹 =
భ

ೝ
 ோௌௌோିௌௌோ

భ

ష಼
  ௌௌோ

• r = number of restrictions (coefficients set to zero 
in the restricted regression).

• In example (3), r = ______.

• K = number of s in the unrestricted regression.

• In example (3), K = ______.
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Perform the general F test 
of multiple restrictions (cont’d)

• Find critical point in a table of the F 
distribution.  

• Here, DOF in numerator = r and DOF in 
denominator = n-K.

• Statistical software will often compute the 
critical point and/or the p-value 
automatically.

Perform the general F test 
of multiple restrictions (cont’d)

• Again, reject the restriction if F statistic is 
greater than the critical point—that is, if the 
restriction increases the sum of squared 
residuals a lot.

critical point

significance 
level

critical region

Must the error terms be normally-
distributed for the F-test to be valid?

• The F-test is an exact test (i.e., the critical 
points are exactly as shown in the F-table) if 
the errors are normally-distributed.

• However, if the sample size is large, the F-
test is asympotically valid, even if the error 
terms are not normally-distributed.

Testing multiple restrictions on 
coefficients: an alternative test

• The Lagrange multiplier (LM) test has recently 
become popular in econometrics.

• The name comes from constrained optimization in 
the context of maximum-likelihood estimation.

• Recall that if the error term is normally-
distributed, LS is maximum-likelihood.

• But this test is also asymptotically valid even if the 
error terms are not normally-distributed.

Compute the LM test statistic

• Estimate the restricted regression and save 
the residuals.

• Estimate an auxiliary regression:
• Dependent variable = restricted residuals.
• Regressors = all regressors, including the 

excluded regressors.

• Compute (n RA
2),  where  RA

2 is computed 
from the auxiliary regression.

What is an “auxiliary 
regression”?

• An auxiliary regression is a regression used 
only to compute a test statistic.

• It has ______ substantive meaning.

• The coefficients do _______ correspond to 
parameters of any substantive model.

• But here, if they are statistically different 
from zero, then we can reject the 
restrictions (H0).
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Perform the LM test of multiple 
restrictions

• It can be shown that under H0, (n RA
2) is 

distributed as chi-square with  r  degrees of 
freedom.

• So reject H0 if  (n RA
2) is ___________ than 

the critical point.

critical point

significance 
level

critical region

Why the LM test works

• By the algebraic properties of LS, residuals 
from the restricted regression must be 
uncorrelated with the included regressors.

• Under H0, the residuals should also be 
uncorrelated with these  r  excluded 
regressors.

• So under H0, (n R2)  from the auxiliary 
regression should be _______________. 

Applying LM test to example (3)

• In this example, restricted regression is: 
earnings = 1 + 4 hours + 5 risk + .

• Auxiliary regression is:
= 1 + 2 educ + 3 exper + 4 hours + 

5 risk + .

• Here,   is a new error term.

Applying LM test to example (3) 
(cont’d)

• Under H0, (n R2) from the auxiliary 
regression is distributed as chi-square with 
DOF=______.   We reject H0

• if (n R2) is __________ than the critical point.  

• or equivalently if P-value is ______________ 
than desired significance.

Conclusions

• To test a restriction involving multiple 
coefficients, we can use a t-test or an F-test.

• To test multiple restrictions, we can use an F-test 
or an LM test.

• The F-test compares the sum of squared residuals 
without and without the restrictions, and rejects H0

if the change in fit is ___________.

• The LM test regresses the restricted residuals on 
all the regressors, and rejects H0 if (n R2) for this 
auxiliary regression is __________.

Part 3:  Multiple regression with cross-sectional data Page 3-39

STAT 170 - Regression and Time Series © 2024  William M. Boal



ALTERNATIVE FUNCTIONAL FORMS

ALTERNATIVE 
FUNCTIONAL FORMS

• How can multiple linear regression 
be used to fit nonlinear 
relationships?

Nonlinear relationships

• It is unrealistic to assume that all 
relationships are linear.

• Examples of nonlinear relationships:
• production with diminishing returns.

• demand with constant elasticities (not constant 
slopes).

• U-shaped average cost.

A trick

• Nonlinear relationships can be fitted by 
transforming the variables before estimation 
by ordinary least squares.

• For two-variable regression, we considered 
reciprocals and logarithms.

• Multiple regression offers additional 
possibilities.

Popular transformations

(1) quadratic form.

(2) cubic form.

(3) interaction effects.

Quadratic form

• Form:  y = 1 + 2 x + 3 (x2) .

• Effect of x:  dy/dx = 2 + 2 3 x .

• Effect increases if 3 ___ 0, decreases if 
3____ 0.

Example of quadratic form

U-shaped average cost 
curve

Avg cost = 50 
- 0.50 output 
+ 0.002 output2.
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Cubic form

• Form:  y = 1 + 2x + 3(x2) + 4(x3) .

• Effect of x:
dy/dx = 2 + 2 3 x + 3 4 x2 .

• Effect of  x  first decreases and then 
increases if 3 ____ 0  and 4 _____ 0 .

Example of cubic form

Total cost function

Total cost = 50 output 
– 0.50 output2

+ 0.002 output3 .
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Interaction effects

• Form:  y = 1 + 2x2 + 3x3 + 4(x2x3) .

• Effect of x2:  dy/dx2 = 2 + 4 x3 .

• Effect of x3:  dy/dx3 = 3 + 4 x2 .

• Effect of each regressor depends on the 
value of the other.

Example of interaction effects

Human capital equation

hourly wage =  + 1.8 educ + 0.5 exper
+ (educ * exper) .

• d pay / d educ = 1.8 + 0.04 exper.

• So for someone with  exper=10 years, an 
extra year of  educ increases pay by 
1.8 + 0.04(10) = $________.

Example of interaction effects 
(cont’d)

Human capital equation

• Also,  d wage / d exper = 0.5 + 0.04 educ.

• So for someone with  educ=16 years, an 
extra year of  exper increases pay by 
0.5 + 0.04(16) = $_________.

Example of interaction effects 
(cont’d)

Human capital equation

• Also,  d wage / d exper = 0.5 + 0.04 educ.

• So for someone with  educ=16 years, an 
extra year of  exper increases pay by 
0.5 + 0.04(16) = $ 1.14      .
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Conclusions

• Nonlinear relationships can be fitted by
_____________________ the variables 
before estimating by ordinary least squares.

• Popular transformations include reciprocals, 
logarithms, polynomials, and interaction 
effects.
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DUMMY (OR BINARY) 
VARIABLES

• How can we allow for a change in 
the intercept?

Change in intercept

• Suppose we believe 
that the intercept in 
our equation is 
different for part of the 
sample.

y

x

Example:  human capital and 
union membership

hourly wage
= 1 + 2 educ

• However, 1 might be 
higher for members of 
labor unions.

ho
ur

ly
 w

ag
e

educ

Defining a dummy variable

• Define  di = 1  for all workers who are 
members of labor unions.

• Define  di = 0  for all workers who are not 
members of unions.

• di is thus a zero-one variable, called a 
“binary variable” or a “dummy variable.”

Creating a dummy variable

diUnion member?Name

yesJ. Smith

noK. Jones

noL. Ramirez

yesM. Huang

etc.

Including the dummy variable

• Now estimate
hourly wage = 1 + 2 educ + 3 d .

• The coefficient  3 measures the difference 
in the intercept between union and 
nonunion workers.

• Difference can be positive or negative.
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When  di = 0

• For nonunion workers, 
di = 0, so:

hourly wage 
= 1 + 2 educ + 3 0 , 

• intercept = 1

• slope = 2 .

ho
ur

ly
 w

ag
e

educ

When  di = 1

• For union workers, 
di = 1, so:

hourly wage 
= 1 + 2 educ + 3 1 , 

• intercept = 1 + 3 

• slope = 2 .

ho
ur

ly
 w

ag
e

educ

Computing intercepts:
numerical example

• Suppose hourly wage =  2.1 + 0.7 educ + 1.7 d
where d = 1 for union members, = 0 for workers 
not members of a union.

• Nonunion intercept = ________ .

• Union intercept = 2.1 + 1.7 = ________ .

• Slope for both = ________ .

• Interpretation:  union workers earn $___________ 
more per hour than nonunion workers with same 
education, on average.

Testing for different intercept

• To test whether the two groups have a 
different intercept, just use the t-test on 3.
• H0:  Groups have same intercept.  
3 = 0.

• H1:  Groups have different intercepts.
3  0.

Two ways to define the dummy 
variable

• We could have defined  di = 1  for all workers who 
are not members of labor unions.

• LS estimate of  3 would have been same 
magnitude but opposite sign.

• SE for  3 would have been the same.
• t statistic would be same magnitude but opposite 

sign.
• Estimated intercepts of two groups would be 

unchanged.

More than two groups

• Suppose we believe that the intercept varies 
across more than two groups.

• Then we need to create more dummy 
variables.

• For  m  groups, we need  m-1  dummy 
variables.
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Example:  human capital and 
occupational groups

hourly wage
= 1 + 2 educ

• However, 1 might be 
different for:

• professional workers

• managerial workers

• clerical workers

• blue-collar workers

ho
ur

ly
 w

ag
e

educ

Defining dummy variables

• Define  dprofi = 1  for professional workers 
and = 0 for all others.

• Define  dmani = 1  for managerial workers 
and = 0 for all others.

• Define  dcleri = 1  for clerical workers 
and = 0 for all others.

• No dummy variable for blue-collar workers.

Including the dummy variables

• Now estimate
hourly wage = 1 + 2 educ + 3 dprof 
+ 4 dman + 5 dcler .

• The coefficients  3 , 4 , and 5 measure 
the difference in the intercept between these 
workers and blue-collar workers.

• Differences can be positive or negative.

Each group now has own 
intercept

• Professional workers’ intercept = _______.

• Managerial workers’ intercept = ________.

• Clerical workers’ intercept =___________.

• Blue-collar workers’ intercept = ________.

Why only three dummy variables 
for four groups

• Suppose we defined a 4th dummy variable
• dbluei = 1  for blue-collar workers 

and = 0 for all others.

• Since every worker is a member of one and 
only one group,
dprofi + dmani + dcleri + dbluei = 1 .

• Including dbluei in the regression would 
cause perfect ______________________.

One reference group  and
m-1 dummy variables

• For  m  groups, we have one “reference 
group” or “base group” and  m-1 dummy 
variables.

• Here, blue-collar workers are the reference 
group.

• The three coefficients  3, 4, and 5

measure differences from the reference 
group.
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Testing for different intercepts

• To test whether the four groups have a 
different intercepts, just use an F-test on 3, 
4, and 5 .

• H0:  Groups have same intercept.  
3 = 4 = 5 = 0.   

• H1:  Groups have different intercepts.
3 0 , or 4 0 , or 5 0.

Applying the F-test

• Unrestricted equation:
hourly wage = 1 + 2 educ + 3 dprof
+ 4 dman + 5 dcler .

• Restricted equation (assumes 0=3=4=5): 
hourly wage = 1 + 2 educ.

• Here, r = number of restrictions = ____. 

• K = number of s in unrestricted equation 
= ____.

Formula for the F-statistic

• More generally, r = number of dummy 
variables = number of groups minus one.

• K = number of s, including dummy 
coefficients.

𝐹 =

1
𝑟

 𝑅𝑆𝑆𝑅 − 𝑈𝑆𝑆𝑅

1
𝑛 − 𝐾

  𝑈𝑆𝑆𝑅

F-test:  numerical example

• Suppose previous equation estimated on 
100 observations:  n=100.

• Sum of squared residuals with dummy 
variables (unrestricted) = 487.2

• Sum of squared residuals without dummy 
variables (restricted) = 743.1.

• K = 1 intercept + 1 slope coefficient + 3 
dummy variables = _______.

F-test:  numerical example (cont’d)

• r = three dummy coefficients = 3.

• Critical point for F(3,95) at 1% significance 
is about 4.01.  Easily ____________ null 
hypothesis of common intercept.

F-test:  numerical example (cont’d)

• r = three dummy coefficients = 3.

• Critical point for F(3,95) at 1% significance 
is about 4.01.  Easily REJECT     null 
hypothesis of common intercept.
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Many ways to define the dummy 
variables

• Any group can be the reference group.

• So choose the reference group to make 
economic interpretation as easy as possible.

• Choice of reference group does not change 
intercept estimates, or the F-test statistic.

Interpreting dummy coefficients 
when dependent variable is in logs

• Recall: whenever dependent variable is in 
natural log, slope coefficient = percent 
change in dependent variable from one-unit 
change in regressor.

• Coefficient of dummy thus shows percent 
difference between groups, holding other 
regressors constant.

When dependent variable is in logs:  
numerical example

• Suppose ln(wage) =  0.40 + 0.09 educ + 0.12 d
where d = 1 for union members, = 0 for workers 
not members of a union.

• One more year of education ( educ = 1) causes 
the wage to rise by about _____ percent.

• Union members (d=1) enjoy wages about _______ 
percent higher than nonunion workers (d=0).

Conclusions

• Differences in the intercept across groups of 
observations can be permitted by including 
dummy (zero-one) variables.

• If there are only two groups, just _______ 
dummy variable is needed.

• If there are  m  groups, then  _________ 
dummy variables are needed.
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STRUCTURAL CHANGE

• How can we allow for a change in 
both the intercept and the slope?

Change in intercept and slope

• Suppose we believe 
that the intercept and
the slope in our 
equation are different 
for part of the sample.

y

x

Example:  human capital and 
union membership

hourly wage
= 1 + 2 educ

• However, we suspect 
1 might be higher and  
2 might be lower for 
members of labor 
unions.

ho
ur

ly
 w

ag
e

educ

Defining a dummy variable and 
an interaction

• As before, define  di = 1  for union members 
and  di = 0  non-union members.

• But also define an interaction variable:
(di  educi).  Thus:
• (di  educi) = educi for union members.

• (di  educi) = 0  for non-union members.

Creating an interaction variable

Union 
Education

EducationUnion 
dummy

Name

140J. Rodriguez

161S. Aiello

180J. Wang

121R. Patel

etc.

Including the dummy variable 
and the interaction

• Now estimate:  hourly wage
= 1 + 2 educ + 3 d + 4 (d  educ).

• Coefficient  3 measures the difference in 
the ______________ between union and 
nonunion workers.

• Coefficient  4 measures the difference in 
the ______________ between union and 
nonunion workers.
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When  di = 0

• For nonunion workers, 
di = 0, so:

hourly wage = 1 + 2

educ + 3 0 + 4 0 , 

• intercept = 1

• slope = 2 .

ho
ur

ly
 w

ag
e

educ

When  di = 1

• For union workers, 
di = 1, so:

hourly wage = 1 + 2

educ + 3 1 + 4 educ .

• intercept = 1 + 3 

• slope = 2 + 4 .

ho
ur

ly
 w

ag
e

educ

Numerical example

hourly wage  =  + 0.74 educ + 2.01 d  
– 0.22 (d educ).

• Nonunion workers (d=0):
• Intercept = ________.

• Slope = ________.

• Union workers (d=1):
• Intercept is 6.07 + 2.01 = ________.

• Slope = 0.74 – 0.22 = ________.

Testing for different slope

• To test whether the two groups have a 
different slope, just use the t-test on 4.
• H0:  Groups have same slope.  

4 = 0.

• H1:  Groups have different slopes.
4  0.

Testing for different intercept or 
different slope or both

• To test whether the two groups have a 
different intercepts and/or slope, must test 
3 and 4 jointly.
• H0:  Groups have same intercept and slope.  3

=0  and  4 = 0.

• H1:  Groups have different intercepts and/or 
different slopes.  3  0  and/or 
4  0 

Restricted versus unrestricted 
equations

• Unrestricted equation:
hourly wage

= 1 + 2 educ + 3 d + 4 (d  educ).

• Restricted equation (assumes 0=3=4): 
hourly wage = 1 + 2 educ.

• Here, r = # of restrictions = _____. 

• K = # of s in unrestricted equation = ____.
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Applying the test

• Here, H0 means that both groups lie on the 
___________ regression line.

• H1 means they lie on ____________ lines.

• Intuition:  If the sum of squared residuals 
_______________ substantially when we 
try to fit the same line to both groups, we 
should reject the null hypothesis.

Compute the F-statistic

• So reject H0 if  F-statistic is sufficiently 
high.

𝐹 =

1
𝑟

 𝑅𝑆𝑆𝑅 − 𝑈𝑆𝑆𝑅

1
𝑛 − 𝐾

  𝑈𝑆𝑆𝑅

“Chow test”

• Alternative hypothesis H1 is sometimes 
called “structural change.”

• The F-test for structural change is 
sometimes called the “Chow test.”

• Gregory Chow first used this test in 1960 
(but he did not call it a “Chow test”).

Gregory Chow, “Tests of Equality Between Sets of Coefficients in Two Linear
Regressions,” Econometrica, Vol. 28 (1960), pp. 591-605.

Two ways to define the dummy 
variable and interaction

• We could have defined  di = 1  for non-
union members.

• LS estimates of  3 and 4 would have been 
same magnitudes but opposite signs.

• SEs for 3 and 4 would have been the 
same.

• So definition does not change results, 
properly interpreted.

More than two slope coefficients

• Suppose we wish to test for “structural 
change” in a bigger equation:

• hourly wage = 1 + 2 educ+ 3 exper .

• We must define another interaction:
• (di  experi) = experi for union members.

• (di  experi) = 0  for non-union members.

Restricted versus unrestricted 
equations

• Unrestricted equation:   
hourly wage = 1 + 2 educ+ 3 exper
+ 4 d + 5 (d  educ) + 6 (d  exper).

• Restricted equation (assumes 0=4=5 =6): 
hourly wage = 1 + 2 educ+ 3 exper .

• Here, r = number of restrictions = ____. 

• K = number of s in unrestricted equation 
= ____.
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Again use F-statistic

• For general Chow test,
• K = total number of s, including coefficients 

of dummies and interactions.

• r = number of restrictions = K/2.

𝐹 =

1
𝑟

 𝑅𝑆𝑆𝑅 − 𝑈𝑆𝑆𝑅

1
𝑛 − 𝐾

  𝑈𝑆𝑆𝑅

Conclusions

• Differences in the intercept and slope across 
groups of observations can be permitted by 
including dummy (zero-one) variables and 
_________________.

• The dummy variable should be interacted 
with every variable whose coefficient is 
thought to differ across groups.

• Test for differences using an __________.
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INFLUENTIAL 
OBSERVATIONS

• What are “influential 
observations”?

• Why do they merit attention?

Influential observations

• While ordinary least squares uses all of the 
data, some observations have more 
influence on the estimates than others.

• Outlier = observation whose y-value is far 
from the fitted line.

• High leverage point = observation whose x-
values are far from the rest.

How to find high leverage points 
in multiple regression?

• Before computing LS, always compute descriptive 
statistics of x variables—mean, standard deviation, 
minimum and maximum.

• Do a box plot of each x variable.

• Print the five largest and five smallest values of 
each x variable.

• But these methods might not work because 
leverage depends on combinations of xs.

Formal definition of leverage

• It can be shown (using matrix algebra) that each 
LS fitted value 𝑦ො is a linear function of all the 
actual yis:
𝑦ො = ℎଵ𝑦ଵ + ℎଶ𝑦ଶ + ⋯ + ℎ𝑦 + ⋯ +  ℎ𝑦

where each ℎ depends on all the xs.

• Then ℎ is called the leverage of the ith
observation.

• ℎ can easily be computed by statistical software.

Properties of leverage

• It can be shown that necessarily
ଵ


≤ ℎ ≤ 1 and   

ଵ


∑ ℎ


ୀଵ =





where K = total number of βs, including the 
intercept.

• Conventionally, an observation is a called a 
high leverage point, if ℎ > _______. 

How to find outliers in multiple 
regression?

• After computing LS, do a box plot of LS 
residuals.

• Print the five largest and five smallest 
values of the residuals.
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Leave-one-out measures of 
influence

• An obvious way of finding influential 
observations is to _________________ an 
observation from the data and recompute LS 
estimates and/or fitted values.

• If they change a lot, the observation is 
influential.

• Most statistical software can easily do this 
for all  n  observations.

Measuring changes in fitted 
values: Cook’s distance

• How much would the LS fitted values 
change if hypothetically an observation 
were left out of the data?

• Let 𝑦ො() denote the fitted or predicted value 
for observation j using LS estimates that 
leave out observation i.

• Observation  i is influential if all the  𝑦ො()

are far from the usual LS fitted values  𝑦ො.

Formal definition of 
Cook’s distance

• 𝐷 =
∑ ௬ොೕି௬ොೕ()

మ
ೕసభ

  ఙෝ
మ ,  where K = total number of 

βs, including the intercept.

• A typical value of  Di is about (______).  A much 
higher value indicates an influential observation.

• Note that we would expect  Di to decrease as the 
sample size  n  increases, for then any individual 
observation should have less and less influence.

What to do about influential 
observations?

• Why do influential observations occur?
• Possibly data error.  

• Possibly observation does not belong in sample.

• Possibly just random variation.

• What to do?
• Check for data errors.

• Check whether observation does not belong in 
sample.

Conclusions

• Influential observations have greater influence on 
regression results than other observations.

• Leverage and Cook’s distance are measures for 
finding influential observations in multiple 
regression.

• Influential observations can occur because of 
_________________ or because an observation 
does ________ belong in the sample.
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PREDICTION

SELECTION OF REGRESSORS 
FOR PREDICTION

• How can we find the right 
regressors if our purpose is 
prediction?

If our purpose is prediction...

• We want a model that “explains” the yi

well.

• Our model should produce predicted values 
𝑦ො close to the actual values  yi.

• Adding more regressors always improves 
the “fit,” _________ R2 and _________ 𝜎ොଶ.

Measures of prediction success for 
linear models (higher is better)

• 𝑅ଶ = 1 −
∑ ఌො

మ

∑ ௬ି௬ത మ

• 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅ଶ = 1 −
భ

ష಼
∑ ఌො

మ

భ

షభ
∑ ௬ି௬ത మ

= 1 −
𝜎ොଶ

𝑉𝑎𝑟 𝑌


where K = number of βs including intercept. 

Measures of prediction success for 
linear models (lower is better)

• 𝐴𝐼𝐶 = 𝐴𝑘𝑎𝑖𝑘𝑒 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
= n ln 2𝜋 + 𝑛

+𝑛 𝑙𝑛
1

𝑛
 𝜀̂

ଶ


ୀଵ
+ 2 𝐾 + 1

• 𝐵𝐼𝐶 = 𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
= n ln 2𝜋 + 𝑛

+𝑛 𝑙𝑛
1

𝑛
 𝜀̂

ଶ


ୀଵ
+ 𝐾 + 1  ln 𝑛

where K = number of βs including intercept. 

How to choose regressors to 
improve prediction

A. Analysis of residuals.
• Plot residuals against included regressors.

• Plot residuals against potential regressors.

B. Automated selection of regressors.
• Stepwise algorithms.

• Best regression search algorithm.

Example of plotting residuals against 
included regressor:  problem?
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LS residuals from y = β1 + β2 x
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Example of plotting residuals against 
included regressor:  solution?
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Raw data for example above
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Automated selection of 
regressors

• If there are many potential regressors, there 
are even more potential models.

• In general, if there are  m  potential 
regressors, then there are  2m potential 
models (including the model with no 
regressors and the model will all).

• How to find the best one?

Stepwise algorithms

• Instead of estimating all 2m potential models, 
stepwise methods add or eliminate regressors one 
by one.

• Forward selection adds regressors until none of 
the remaining possibilities make a sufficient 
contribution to fit.

• Backward elimination (aka backward selection) 
subtracts regressors until all of the remaining 
regressors are too important to eliminate.

Stepwise algorithms:
forward selection

• Estimate the  m  models with ONE regressor.

• Choose best model, by some criterion (t statistic, 
adjusted R2, AIC, etc.).

• Now estimate m-1 models that add a second 
regressor.

• Choose best model, by some criterion.  Repeat!

• Stop when no potential models show substantial 
improvement, by some predetermined criterion.

Stepwise algorithms:
backward elimination

• Begin with ALL potential regressors.

• Estimate  m  models that drop one regressor.

• Choose best model, by some criterion (t statistic, 
adjusted R2, AIC, etc.).

• Now estimate m-1 models that drop a second 
regressor.

• Choose best model, by some criterion.  Repeat!

• Stop when no potential models show substantial 
improvement, by some predetermined criterion.
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Caution about stepwise 
algorithms

• Sequential tests are not strictly valid.

• With forward selection, early t tests are computed 
on the wrong model—some regressors are 
missing—which violates LS assumptions.

• With backward selection, later t tests are 
computed conditional on the variable surviving 
prior t-tests, which means the true size* is actually 
much larger than 5%.

* Probability of mistakenly rejecting the null hypothesis.

Best regression algorithm

• Given  m  potential regressors, decide how 
many regressors to include.  Call that 
number  p.

• Estimate all 
𝑚
𝑝 =

!

! ି !
potential 

models with  p regressors.

• Choose best model, by some criterion (F 
statistic, adjusted R2, AIC, etc.).

Caution about all automated 
search algorithms

• Search algorithms can “overfit,” finding a 
model that fits the sample extremely well, 
but predicting poorly out-of-sample.

• Why?  Because, for example, using a t test 
with 5% significance means rejecting the 
null hypothesis by mistake 1 in 20 times.

• But repeating the t test increases the chance 
of mistakenly rejecting the null hypothesis.

Model validation 
by splitting the sample

• Ideal approach, if there is sufficient data, is 
to divide sample into two:  
• one sample for selection and estimation 

• one sample for prediction.

• Models should be evaluated on how they 
perform in the prediction sample.

Conclusions

• If our purpose is prediction, we select regressors 
to improve the fit, as measured by R2 , etc.

• Plotting residuals against included or omitted 
regressors can help find useful regressors.

• Automated methods for selection of regressors 
include forward selection, backward elimination, 
and overall best regression algorithms.

• However, automated methods can sometimes 
“over-fit,” predicting poorly out-of-sample.
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SELECTION OF REGRESSORS 
FOR CAUSAL INFERENCE

• How can we find the right 
regressors if our purpose is causal 
inference?

If our purpose is 
causal inference...

• We want to measure the causal effect of  x  
on  y,  ceteris paribus*.

• That requires measuring what happens to  y  
when  x  changes, while holding constant all 
other factors that might influence  y.

• We want unbiased estimates of the slope 
________________.  (R2 is unimportant.)

* Latin: other things equal.

Purpose determines selection of 
regressors:  example 1

• Consider equation:  health = β1 + β2 schooling, 
where health = summary measure of health status 
and schooling = years of schooling.

• Our purpose might be to predict health—perhaps 
to help price health insurance or life insurance.

• In that case, we keep schooling in the equation 
only if it improves the fit (high t-statistic, low p-
value, etc.).

Purpose determines selection of 
regressors:  example 1 (cont’d)

• Alternatively, our purpose might be to measure the 
causal effect of schooling on health—perhaps to 
measure the benefits of public policy requiring 
high school students to stay in school longer.

• In that case, we keep schooling in the equation 
regardless.

• What other variables should we include?

Laboratory data versus 
observational data

• In some fields, laboratory experiments are used to 
measure causal effects.

• In a lab, one can control the other factors that 
might influence  y.  In that case, two variable 
regression is unbiased.

Laboratory data versus 
observational data (cont’d)

• Outside a lab, we cannot literally control other 
factors.  We can only observe them.

• For example, we cannot control all factors of 
peoples’ lives that might affect their health.

• But sometimes we can statistically control for 
these other factors with extra regressors.
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Example 1:  health status and 
schooling (cont’d)

• Parents’ income might positively affect health 
status, because people with wealthier parents 
likely enjoyed better health care as children.

• At the same time, people with wealthier parents 
likely received more schooling.

• If parents’ income is omitted from the regression, 
then the estimated coefficient of schooling will 
pick up some of the effect of parents’ income.

Example 1:  control variables

• To avoid omitted variable bias, we instead 
estimate:  
health = β1 + β2 schooling + β3 parents’ income .

• Our focus is on β2 .  Schooling is sometimes called 
the “treatment variable.”

• Parents’ income is included not to improve the fit, 
but to insure the estimate of β2 is unbiased.

• Parents’ income is called a “control variable.”

Example 1:  bad controls

• Measures of the person’s healthy habits (diet and 
exercise) would likely be statistically significant.

• But education improves people’s health in part by 
encouraging healthy habits.

• So including healthy habits as controls would bias 
down the estimated effect of education on health.

• In general, anything caused by the treatment is a 
bad control and should not be used.

Example 2

• Suppose our purpose is to measure the causal 
effect of schooling on earnings.

• We estimate this equation:  
earnings = β1 + β2 schooling, 
where schooling = years of schooling.

• But work experience also affects earnings and is 
negatively correlated with schooling.

Causal inference example 2:  
omitted variable bias

• Omitting work 
experience results in 
omitted variable bias 
(aka selection bias).

• Estimated coefficient 
of schooling is biased 
_______.

Schooling

E
ar

ni
ng

s

True line

Example 2:  control variables

• To avoid omitted variable bias, we instead 
estimate:  
earnings = β1 + β2 schooling + β3 experience.

• Our focus is on β2 .  Schooling is sometimes called 
the “treatment variable.”

• Experience is included not to improve the fit, but 
to insure the estimate of β2 is unbiased.

• Experience is called a “control variable.”
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Example 2:  bad controls

• Occupation dummy variables would also likely be 
statistically significant.

• But education increases people’s earnings in part 
by giving access to higher-paying occupations.

• So including occupation dummy variables as 
controls would bias down the estimated effect of 
education on earnings.

• In general, anything caused by the treatment is a 
bad control and should not be used.

Conclusions

• If our purpose is causal inference, we select 
regressors, called controls, to ensure our estimate 
of the coefficient of the treatment variable is 
unbiased.

• Good controls have an effect on the dependent 
variable, are correlated with the treatment 
variable, but are not themselves caused by the 
treatment variable.

• Bad controls are caused by the treatment variable. 
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HETEROSKEDASTICITY:  
DEFINITION AND 
CONSEQUENCES

• What happens to the LS estimators 
if assumption #3 is violated?

Recall assumption #3:  
homoskedasticity

• Error term has 
constant variance.

• Var (i) = 2.

• Variance is the ______ 
for all observations
i = 1, …, n.

x

y

Definition of heteroskedasticity

• Error term has 
changing variance

• Var (i) = i
2.

• Variance is ________ 
for each observation.

x

y

What causes heteroskedasticity?

• Error term represents unobserved random 
variables that affect  y.

• If the variance of these unobserved 
variables is ________ constant, then 
heteroskedasticity occurs.

• But why would the variance not be 
constant?

Heteroskedasticity can be caused by 
differences in size of observations

• Cross-section datasets often 
contain observations of very 
different size.

• Example:  states of the U.S. are 
of vastly different size. 

• The population of California 
(CA) is about ______
times population of Iowa (IA).

CA

IA
Heteroskedasticity can be caused by 
differences in size of observations

• Cross-section datasets often 
contain observations of very 
different size.

• Example:  states of the U.S. are 
of vastly different size. 

• The population of California 
(CA) is about  12  _
times population of Iowa (IA).

CA

IA
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Heteroskedasticity related to 
population:  example

• Suppose we estimate a consumption 
function using 50 observations on states:
consi = 1 + 2 inci + i .

• Var(i) can be either proportional or 
inversely proportional to state population, 
depending on whether  consi and  inci are 
totals or averages (per capita).

• Here is why.

Heteroskedasticity when the data 
are TOTALS

• Suppose  consi = total consumption and  inci = 
total income for the entire population of each state.

• Then  i must = ______________ unobserved 
factors for all people in that state:

where  aj = the unobserved factor for person  j  in 
state  i,  whose total population is POPi.

Heteroskedasticity when the data 
are TOTALS (cont’d)

• Suppose Var(aj) =      , constant, and the  aj are 
uncorrelated.  Then

• So the variance of the error term is not constant.
It is ________________________________  
to the population of the state.

• In particular, Var(CA) = ______  Var(IA). 

Heteroskedasticity when the data 
are AVERAGES

• Alternatively, suppose  consi = average 
consumption and  inci = average income per capita 
in each state.

• Then  i must = ______________ unobserved 
factor per capita in each state:

where  aj = the unobserved factor for person  j  in 
state  i,  whose total population is POPi.

Heteroskedasticity when the data 
are AVERAGES (cont’d)

• Then

• So the variance of the error term is not constant.  
It is ________________________________  
to the population of the state.

• In particular, Var(CA) = ________  Var(IA). 

What properties still hold when 
the error term is heteroskedastic?
• LS estimators are still unbiased.

• LS estimators are still consistent (under 
modest assumptions).

• LS estimators are still method-of-moments
estimators.
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What properties no longer hold?

• LS estimators are no longer the
B____ L______ U________ E_________ 
(Gauss-Markov theorem).

• Standard formulas for variance of LS 
estimators (and standard errors) are no 
longer correct.  Why not?

Intuition:  Sometimes heteroskedasticity can 
increase the variance of the LS estimators

• Heteroskedastic • Homoskedastic

x

y

x

y

Intuition:  Sometimes heteroskedasticity can 
decrease the variance of the LS estimators

• Heteroskedastic • Homoskedastic

x

y

x

y

Consequences of 
heteroskedasticity:  intuition

• Heteroskedasticity can increase or decrease 
the variance of the LS estimators.

• Samples with the same average error 
variance might yield more or less precise 
LS estimators for slope and intercept.

• Standard errors computed without 
recognizing heteroskedasticity can be either 
too large or too small.

Formula for the variance of the 
LS slope estimator

• Assuming no autocorrelation, we found that 
the variance of the LS slope estimator was 
given by the following formula:

Implications of homoskedasticity

• Assuming homoskedasticity, the formula 
could be simplified:
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Variance of LS slope estimator 
with homoskedasticity

…leading to the usual formula:

What if the error variance is larger
when x is far from its mean?

• Heteroskedastic • Then

• So usual formula is 
too small:

x

y

What if the error variance is smaller
when x is far from its mean?

• Heteroskedastic • Then

• So usual formula is 
too large:

x

y

Consequences of 
heteroskedasticity:  formal results
• Usual standard error formulas are biased.

• If variance is smaller when x is close to its 
mean, usual formulas are biased down.
• Standard errors are too ___________. 

• If variance is smaller when x is far from its 
mean, usual formulas are biased up.
• Standard errors are too ___________.

Other consequences

• Any calculations based on the usual 
standard errors are also biased.

• Usual formulas for confidence intervals are 
either too large or too small.

• Test statistics (t-tests, F-tests, etc.) are 
inaccurate.

Conclusions

• If the error term is heteroskedastic, LS 
estimators are still ____________ and 
______________, and can still be justified 
by the method-of-moments principle.

• However, the usual formulas for 
_________________, confidence intervals, 
and test statistics are invalid.
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TESTING FOR 
HETEROSKEDASTICITY

• How can we test for 
heteroskedasticity?

Testing for heteroskedasticity

• Many tests have been proposed for 
heteroskedasticity.

• Here we cover the two most popular tests.

• Breusch-Pagan test, with modification by 
Koenker.

• White test.

Breusch, T.S., and A.R. Pagan, “A Simple Test for Heteroskedasticity and Random
Coefficient Variation,” Econometrica, Vol. 47,  (1979), pp. 987-1007.
Koenker, R., “A Note on Studentizing a Test for Heteroskedasticity,” Journal of
Econometrics, Vol. 17 (1981), pp.107-112.
White, Halbert, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and
a Direct Test for Heteroskedasticity,” Econometrica, Vol 48, (1980), pp. 817-838.

Homoskedasticity versus 
heteroskedasticity

• yi = 1 + 2 x2 + ... + K xK + i .

• H0:  Homoskedasticity (no 
heteroskedasticity).  Var(i) = 2.  Variance 
of error term is ______ for all observations.

• H1:  Heteroskedasticity.  Var(i) = i
2.  

Variance is ______________ for different 
observations.

BP (Breusch-Pagan) test for 
heteroskedasticity: motivation

• Suppose we suspect variance of the error 
term depends on one or more observed 
variables  z1, z2, ... , zG .

• Thus, suspect  Var(i) = f(z1,z2, ... , zG) .

• zs  can be the regressors  (xs)  or variables 
not included in regression, but not  y.

BP test for heteroskedasticity:  
procedure

• Tests for a relationship between variance of 
error term and the zs.

• Save residuals from ordinary LS regression.

• Square them and use them as dependent 
variables in an “auxiliary regression”:
𝜀̂ଶ = 0 + 1z1 + 2z2 + ... + GzG +  .

• Here,   is a new error term.

What is an “auxiliary 
regression”?

• An auxiliary regression is a regression used 
only to compute a test statistic.

• It has ______ substantive meaning.

• The coefficients do ________ correspond to 
parameters of any model.

• But here, if they are statistically different 
from zero, we can reject homoskedasticity.
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BP test for heteroskedasticity:  
test statistic

• Could use F-test on auxiliary equation.

• More common to apply so-called LM test.

• Compute  Y = n RA
2,  where  RA

2 is 
computed from the auxiliary regression.

• Under H0, Y asymptotically distributed as 
chi-square with  KA-1  degrees of freedom, 
where KA = number of  ’s  in auxiliary 
regression.

Perform the BP test for 
heteroskedasticity

• So reject H0 if  (n RA
2)  is _____________ 

than the critical point.

critical point

significance 
level

critical region

BP test for heteroskedasticity: 
example

• Suppose we are estimating the relationship 
between traffic accidents and the speed 
limit, using 50 cross-section observations 
on states:
accident ratei = 1 + 2 speed limiti + i .

• However, we suspect  Var(i)  is not 
constant, but related to state population and 
state GDP.

BP test for heteroskedasticity: 
example (cont’d)

• We estimate the accident equation and save the 
residuals  𝜀̂

ଶ.
• Then we estimate an auxiliary regression:

𝜀̂
ଶ = 0 + 1 popi + 2 state GDPi

and find RA
2 = 0.13.

• BP test statistic = n RA
2 = 50(0.13) = _______.

• 5% critical value for chi-square with 2 degrees of 
freedom = 5.99.

• So __________ H0 : homoskedasticity.

BP test for heteroskedasticity: 
intuition

• The auxiliary regression is intended to test 
for a relationship between the  zs and the 
variance of each error term i

2. 
• We do not observe  i

2 so we use the 
squared residuals 𝜀̂

ଶ instead.
• RA

2 measures the strength of this 
relationship.  Reject H0 (homoskedasticity) 
if  RA

2 is sufficiently large.

But why do we care about 
heteroskedasticity?  

What problems does it cause?

(1) Standard errors, t-tests, and F-tests are 
invalid.

• Reason: Usual formulas assume variance of 
error term  i

2 is unrelated to the  xis.
(2) LS estimators for coefficients are still 

unbiased and consistent, but not as precise 
as they could be:  they are not 
B_____ L_______U_________E_______.
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White test for heteroskedasticity:  
motivation

• White (1980) proposed test that focused on 
first problem:  invalid standard errors and 
tests caused by a relationship between 
variance of error term  i

2 and the  xis.

White test for heteroskedasticity:  
motivation

• Tests for relationship between variance of 
the error term term i

2 and the  xs (and 
their squares and interactions).

• White test can be viewed as special case of 
BP test (though proposed independently).

• White test statistic is also computed with an 
auxiliary regression.

White test for heteroskedasticity:  
procedure

• Save residuals from original ordinary LS 
regression.

• Square them and use them as dependent 
variables in an auxiliary regression.

• Regressors in auxiliary regression are 
original regressors, their squares, and their 
interactions.

White test for heteroskedasticity:  
example

• Suppose original equation is:  
quantityi = 1 + 2 pricei + 3 incomei + i

• Then White’s auxiliary equation would be:
𝜀̂

ଶ = 1 + 2 pricei + 3 incomei

+ 4 pricei
2 + 5 incomei

2

+ 6 (pricei  incomei) + i.

White test for heteroskedasticity:  
test statistic

• Could use F-test on auxiliary equation.

• More common to apply so-called LM test.

• Compute  Y = n RA
2,  where RA

2 is 
computed from the auxiliary regression.

• Under H0, Y asymptotically distributed as 
chi-square with  KA-1  degrees of freedom, 
where KA = number of  ’s  in auxiliary 
regression.

White test for heteroskedasticity:  
potential practical issue

• If original equation has many regressors, White’s 
auxiliary equation will have a huge number of 
regressors—perhaps too many to be estimated.

• For example, suppose original regression has 10 
regressors.

• Auxiliary regression uses same 10 regressors, their 
10 squares, and 9+8+7+6+5+4+3+2+1=______ 
interactions, a total of G = ______ regressors plus 
a constant term!

• Auxiliary regression requires at least ______ 
observations just to estimate!
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Conclusion

• For heteroskedasticity related to several 
variables (zs) the BP test can be applied.
• Save residuals from original regression.

• In an auxiliary regression, regress squared 
residuals on z’s.

• Test statistic is (_______).

• White test is similar, but zs are the original 
xs, their squares, and interactions. 
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CORRECTING FOR 
HETEROSKEDASTICITY

• How can we modify the regression 
procedure to correct for 
heteroskedasticity?

Why is heteroskedasticity a 
problem?

• Standard errors, t-tests, and F-tests are 
invalid.

• LS estimators for coefficients are still 
unbiased and consistent, but not as precise 
as they could be:  not 
B____ L_______U_______E__________.

Two approaches to correcting 
heteroskedasticity

1) Robust inference corrects standard errors 
and test statistics so they are still valid in 
presence of heteroskedasticity.

2) Weighted least squares re-estimates the 
whole equation so coefficient estimates are 
BLUE and standard errors are correct.  
More powerful but requires more 
information.

1) Robust inference

• White (1980) derived formulas for standard 
errors that are valid under homoskedasticity 
or heteroskedasticity.

• Formulas are asymptotic—only valid for 
large samples.

• White’s formulas are available in most 
statistical software (but not Excel).

White, Halbert, “A Heteroskedasticity-Consistent Covariance Matrix Estimator and
a Direct Test for Heteroskedasticity,” Econometrica, Vol 48, (1980), pp. 817-838.

White’s standard error 
for two-variable regression

• Recall usual formula, 
valid with no 
heteroskedasticity:

• White’s formula, 
asymptotically valid 
with or without 
heteroskedasticity:

2) Weighted least squares (WLS)

• Suppose we know the pattern of the 
heteroskedasticity.

• Var (i) =  zi, where   = unknown 
constant, and  zi is observed variable.

• Using this information, we can weight the 
data before applying least squares, and 
thereby restore Gauss-Markov assumptions.
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Weighted least squares:
intuitive motivation

• Observations with 
lower variance are 
closer to true 
population regression 
line, on average.

• These observations 
should be more 
heavily weighted in 
computing estimates.

Weighted least squares:
intuitive motivation (cont’d)

• Observations with 
higher variance are 
farther from true 
population regression 
line, on average.

• These observations 
should be discounted 
in computing 
estimates.

Weighted least squares:
intuitive motivation (cont’d)

• Observations with 
higher variance are 
farther from true 
population regression 
line, on average.

• These observations 
should be discounted 
in computing 
estimates.

Weighted least squares:  
transforming the equation

• yi = 1 + 2 xi2 + 3 xi3 + i .

• Assume Var(i) =  zi, where   = unknown 
constant, and  zi is observed variable.

• So multiply original equation by (1/zi
1/2) to 

get _____________ equation:
(yi/zi

1/2) = 1(1/zi
1/2)  + 2(xi2/zi

1/2) 
+ 3(xi3/zi

1/2) + i , where i = i/zi
1/2 .

Weighted least squares:  why 
heteroskedasticity is eliminated

• Formally, by definition, 
i = i/zi

1/2 = (1/zi
1/2) i .

• So Var(i) = (1/zi) Var(i) = (1/zi)  zi =  , 
constant.*  

• Heteroskedasticity is eliminated!

• Intuitively, WLS “discounts” observations 
with high variance (high zi).

* Recall that Var(aX)= a2 Var(X).

Weighted least squares:  
choosing zi

• If  yi is a total variable (total consumption, 
total output, total crimes, etc.) then zi = 
population is usually a good choice.

• If  yi is an average variable (consumption 
per capita, output per capita, crimes per 
capita, etc.) then zi = (1/population) is 
usually a good choice.

• Can check choice of  zi using BP test.
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Weighted least squares:
using software

• If using Excel, must transform the data by 
hand, dividing each data column by zi

1/2.

• In other software, an option for WLS is 
available—usually “weight = variable.”

• variable should be inversely proportional to 
the variance:  variable = 1/zi.  

• Software then multiplies data by variable1/2.

Weighted least squares:  
interpreting results

• Assuming the original equation is correctly 
specified and  Var(i) =  zi , then 
transformed equation is homoskedastic.

• So WLS yields
• BLUE estimates of coefficients in original 

equation.

• valid standard errors, t-tests, and F-tests of 
multiple coefficients.

Conclusions

• White’s robust standard error formulas for 
ordinary LS are valid even in presence of 
heteroskedasticity of unknown form, but the 
coefficient estimates are not ___________.

• Weighted Least Squares coefficient 
estimates are BLUE and standard errors are 
valid, but WLS requires knowledge of the 
variable driving heteroskedasticity (zi).
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TIME SERIES DATA AND 
MODELS

• What is different about time-series 
data and models?

• What is a “white noise” process?

Time-series datasets

• Same individual (person, firm, country) is 
observed repeatedly over time.

• Frequency might be weekly, monthly, quarterly, 
or annual.

RGDP g.r. 
per capita

Inflation 
(CPI)

Unempl. 
rate

YearObs. #

2.53.44.020001

-0.62.84.720012

1.11.65.820023

Why time-series data are different 
from cross-section data

• Observations have a natural ordering.

• Direction of causality:  past can influence 
future, but future cannot influence past.

• Generally, cannot be viewed as a random 
sample.

• Instead, best viewed as a stochastic (i.e., 
random) process:  variables evolving in a 
random way from some initial values.

Notation:  subscripts

• It is conventional to index time-series 
observations by  t  (instead of by  i).

• t = 1 for the first observation.

• t = T for the last observation (instead of  n).

• Observed variable is  yt .

• Unobserved error is  εt .

White noise

• The simplest process is simply an 
independent, identically distributed (IID) 
random variable.

• Mean and variance are constant.

• Sometimes called “white noise” in a time-
series context.

Plot of a white noise process

• Plot should show no 
particular trend or 
pattern.

• Mean could be 
different from zero.

• In this example, mean 
= 5.
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TIME SERIES DATA AND MODELS

Forecasting: definitions

• Suppose at time  t we wish to forecast a 
particular variable  y  (e.g., GDP, interest 
rate, inflation rate, etc.) one period into the 
future:  yt+1.

• This is a _______-step ahead forecast.
• We will use all information available to us 

at time  t,  including the current value yt:  
this is called the _______________ set at 
time  t, denoted  It .

Forecast errors

• Let  ft denote the one-step ahead forecast—
that is, the forecast of  yt-1 at time  t.

• Forecasts are almost never perfect.

• Define the forecast error = et+1 = yt+1 – ft .

Loss from errors

• The choice of 
forecasting method 
depends on the 
criterion or loss 
function.

• Most popular loss 
function is the 
quadratic (or squared-
error) loss function:
loss = α (et+1)2 .

et+1

L
os

s

0

Properties of quadratic loss function

• Symmetric: the loss from et+1= -10 is same 
as the loss from et+1= +10.

• Quadratic:

• loss from et+1= ±2 is _____ times the loss 
from et+1= ±1.

• loss from et+1= ±3 is _____ times the loss 
from et+1= ±1.

Implications of 
quadratic loss function

• Of course,  et+1 is not known in advance, so it 
must be treated as random.

• So we must choose a forecasting method that 
minimizes expected squared error, conditional on 
the information set:

E(et+1
2 | It) = E((yt+1 – ft)2 | It).

• From probability theory we know that expected 
squared error is minimized if the forecast is 
chosen to be the conditional mean:

ft = E(yt+1| It).

Forecasting time series

• In this section of the course our sole purpose is 
forecasting—that is, prediction in a time-series 
context.

• With a model like  yt = β1 + β2 xt + εt , the LS 
predictor of  yT+1 is   𝑦ො்ାଵ = 𝛽መଵ + 𝛽መଶ𝑥்ାଵ .

• However, this requires us to first predict xT+1 , 
which is often difficult.
• Exceptions:  when  xt represents a time trend or a 

seasonal dummy variable.
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Forecasting time series using 
own past values

• So we will explore methods of forecasting 
yt from its own past values.

• That is, we wish to forecast  yT+1, yT+2, yT+3, 
etc. where the information set is  y1, ... , yT.

• No xs will be used, except possibly time 
trends or seasonal dummy variables.

White noise process: example

Suppose our model is  
yt = β1 + εt ,  
where  εt is not observed 
but is assumed to be IID 
with mean zero and 
constant variance  𝜎ଶ.
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White noise process: estimation

These assumptions imply

• The BLUE estimator of β1 is just the sample mean 

of  yt , that is,  𝛽መଵ =
ଵ

்
∑ 𝑦௧

்
௧ୀଵ .

• The unbiased estimator of  σ2 is

𝜎ොଶ =
1

𝑇 − 1
  𝑦௧ − 𝛽መଵ

ଶ
்

௧ୀଵ

Here, 𝛽መଵ= 5.29  and  𝜎ොଶ=1.86 .

White noise process: 
point forecasts

• Because εt is a white-
noise process, our 
forecast for 𝑦ො்ାଵ, 
𝑦ො்ାଶ, etc., is just the 
sample mean, 
𝛽መଵ= 5.29 .
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White noise process: 
forecast error

• Important to report size of likely forecast 
error.

• Forecast error = 𝑦் − 𝑦ො்ାଵ

= 𝛽ଵ + 𝜀்ାଵ − 𝛽መଵ
= 𝛽ଵ − 𝛽መଵ + 𝜀்ାଵ

• Expected value of forecast error is zero 
because 𝛽መଵ is unbiased and  εt has mean 
zero. 

White noise process: 
forecast error variance

• Forecast error variance 
= Var(𝛽መଵ) + Var(εT+1). 

• Note ________ sources of forecast error variance:  
(1) error in estimating 𝛽መଵ and 
(2) brand-new error term εT+1 .

• Var(𝛽መଵ) shrinks as sample size increases, but 
Var(εT+1) does not.

• There is _______ covariance because  𝛽መଵ was 
computed from y1,...,yT , which are uncorrelated 
with  εT+1 since  εt are assumed IID.
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White noise process: 
standard error of forecast

• Here, estimated forecast error variance 
= Var(𝛽መଵ) + 𝜎ොଶ= 0.037 + 1.86 = __________. 

• The standard error of the forecast is simply the 
square root :
SE of forecast = 1.897 = __________.

White noise process: 
forecast interval

• Assume εt is normally-
distributed.

• Then the 95% forecast 
interval is 

= 𝛽መଵ ± 1.96 SE
= 5.29 ± 1.96 1.377

______________________.
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Conclusions

• Time series data have a natural ordering, a time 
direction of causality, and should be viewed as a 
_______________ process, not a random sample.

• In this section of the course, we explore how to 
forecast a time series using only its own past 
values.

• The simplest stochastic process is ____________, 
where observations on  yt are IID.

Conclusions

• Time series data have a natural ordering, a time 
direction of causality, and should be viewed as a 

stochastic       process, not a random sample.

• In this section of the course, we explore how to 
forecast a time series using only its own past 
values.

• The simplest stochastic process is white noise    , 
where observations on  yt are IID.
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TIME TRENDS

• What is a time trend?
• What is the difference between a linear 

trend and an exponential trend?

Most series cannot plausibly be 
modeled as white noise

Most series cannot plausibly be 
modeled as white noise

How to model a trended series?

• The simplest trended process adds a time 
trend regressor:  yt = β1 + β2 t + εt , where  εt

is not observed but is assumed to be IID 
with mean zero and constant variance  𝜎ఌ

ଶ. 

• Depending on the form of the dependent 
variable, the time trend may be called either 
“linear” or “exponential.”

Linear time trend

• A linear time trend 
occurs if the 
dependent variable is 
in levels:
yt = 1 + 2 t + t.

• Then yt increases by 
2 units from one time 
period to the next (if 
the error term does not 
change).

Time

y

Linear time trend: example

• Suppose we have 
estimated the 
following:
yt = 27.3 + 3.4 t.

• Then yt increases by 
_____ units from one 
time period to the next 
(if the error term does 
not change). Time

y
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TIME TRENDS

Fitting a linear trend to US real GDP

• Using data from 1970 to 2004, the 
following estimates were obtained (with 
standard errors in parentheses).

• Thus real GDP increased every year by 
about $_________ billion, on average.

Fitting a linear trend to US real 
GDP:  actual and fitted values

Exponential time trend

• An exponential time 
trend occurs if the 
dependent variable is 
in logarithms.

• ln(y)t = 1 + 2 t + t, 
or yt = exp(1+2t+t).

• Then yt increases by 
1002 percent from 
one observation to the 
next.

Time

y

Exponential time trend: example

• Suppose we have 
estimated the 
following:
ln(yt) = 5.3 + 0.07 t.

• Then yt increases by 
_____________ from 
one observation to the 
next (if the error term 
does not change). Time

y

Fitting an exponential trend 
to US real GDP

• Using same data from 1970 to 2004, the 
following estimates were obtained (with 
standard errors in parentheses).

• Thus real GDP increased every year by 
about _________ %, on average.

Fitting an exponential trend 
to GDP:  actual and fitted values
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Forecasting time series

• In this section of the course our purpose is 
forecasting a single time series from its own 
past values.

• That is, we wish to forecast  yT+1, yT+2, yT+3, 
etc. where the information set is  y1, ... , yT.

• No xs.

Linear trend: example

Suppose our model is  
yt = 1 + 2 t + t,  
where  εt is not observed 
but is assumed to be IID 
with mean zero and 
constant variance  𝜎ଶ .
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Linear trend: estimation

These assumptions imply

• BLUE estimators of β1 and β2 are just the LS 
estimators.

• Unbiased estimator of  σ2 is 𝜎ොଶ =
ଵ

்ିଶ
 ∑ 𝜀௧̂

ଶ்
௧ୀଵ

Here, 𝛽መଵ= 4623.8, 𝛽መଶ= 87.7,  and  𝜎ොଶ=4294.8 .

Linear trend:
point forecasts

• Our forecasts for 
𝑦ො்ାଵ, 𝑦ො்ାଶ, etc., 
are just
𝛽መଵ + 𝛽መଶ 𝑇 + 1

𝛽መଵ + 𝛽መଶ 𝑇 + 2
etc.
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Linear trend: one-step-ahead 
(T+1) forecast error

• Forecast error = 𝑦் − 𝑦ො்ାଵ

= 𝛽ଵ + 𝛽ଶ 𝑇 + 1 + 𝜀்ାଵ − 𝛽መଵ + 𝛽መଶ 𝑇 + 1

= 𝛽ଵ − 𝛽መଵ + 𝛽ଶ − 𝛽መଶ 𝑇 + 1 + 𝜀்ାଵ

• Note that expected value is zero because 𝛽መଵ and 
𝛽መଶ are unbiased and  εt has mean zero.

• As before, forecast error is due to (1) errors in 
estimating coefficients and (2) the brand-new error 
term  εT+1 .  There is no covariance if εt is IID.

Linear trend:  one-step-ahead (T+1) 
forecast interval

• Using formula given in “Two Variable 
Regression” in earlier slideshow on “Prediction 
Intervals,” we have

𝑆𝐸 = 𝜎ොଶ
1

𝑇
+

𝑇 + 1 − 𝑡̅ ଶ

∑ 𝑡 − 𝑡̅ ଶ்
௧ୀଵ

+ 1

where 𝑡̅ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡 =
ଵ

்
∑ 𝑡்

௧ୀଵ =
்ାଵ

ଶ
.

• Assuming εt is normally-distributed, then 95% 
forecast interval is 𝛽መଵ +  𝛽መଶ 𝑇 + 1 ± 1.96 𝑆𝐸

Part 4:  Univariate time series models Page 4-7

STAT 170 - Regression and Time Series © 2024  William M. Boal



TIME TRENDS

Linear trend:  forecasting 
h-steps-ahead (T+h)

• Point forecast: 𝛽መଵ +  𝛽መଶ 𝑇 + ℎ

• 𝑆𝐸 = 𝜎ොଶ ଵ

்
+

்ା ି௧̅ మ

∑ ௧ି௧̅ మ
సభ

+ 1

where 𝑡̅ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡 =
ଵ

்
∑ 𝑡்

௧ୀଵ =
்ାଵ

ଶ
.

• 95% forecast interval is 
𝛽መଵ + 𝛽መଶ 𝑇 + ℎ ± 1.96 𝑆𝐸

Linear trend:
forecast interval
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R2 and adjusted  R2 values often 
very high in time series regressions

• Variation in the fitted 
values is typically 
much greater than 
variation in residuals.

• In the example just 
given modeling M2, 
R2 = 0.995.
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Moreover, R2 and adjusted R2→1 
as sample size T→ ∞

• To see this, assume yt is trended and the 
variance of the error term is constant.

• Then                                        , a constant.

• But                              grows without bound.

Moreover, R2 and adjusted R2→1 
as sample size T→ ∞  (cont’d)

• Theil’s adjusted R2:

• Clearly the second term must approach zero, so 
the adjusted R2 must approach one.

Conclusions

• Many time series show clear linear or exponential 
time trends.

• The time trend is _____________ if the dependent 
variable is in levels, and ________________ if the 
dependent variable is in logs.

• Trends may be modeled in two-variable regression 
with a time trend variable and an IID error term.
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SEASONALITY

• What is seasonality in time-series data?

• What problems does it cause?

• How can they be solved?

Seasonal fluctuations in time series

• Many monthly or quarterly time series show 
seasonal fluctuations.  Examples:
• Housing starts are higher in summer than 

winter.
• Electricity demand is higher in summer and 

winter than spring or fall.
• Unemployment (and employment) rise in June.
• Retail sales are higher in fourth quarter than 

other quarters (due to Christmas).

Seasonality in quarterly data:  
example

Seasonal adjustment

• Seasonal adjustment means removing the effects 
of fluctuations that follow an annual cycle.

• Some data published by the government appear to 
show no seasonal fluctuations because they are 
already seasonally-adjusted.

• Example:  GDP and related data published by the 
Bureau of Economic Analysis.

http://www.bea.gov/

Seasonal adjustment (cont’d)

• Other data are published both with and 
without seasonal adjustment.

• Example:  Employment and related data 
published by the Bureau of Labor Statistics.

• However, data that we collect ourselves 
(company sales, local economic activity, 
etc.) are _______ likely to be seasonally-
adjusted.

http://www.bls.gov/

Problems caused by seasonality

• If seasonality in data is not controlled for, 
problems may result.

• The error term will be serially correlated (often 
negatively), violating assumption #4 (no serial 
correlation).  This would invalidate standard 
errors, tests, and forecast intervals.

• Unrelated series may appear correlated if they 
both have similar seasonal patterns.  This is 
because assumption #2 (exogeneity) is likely 
violated.
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Controlling for seasonality

• An easy way to control for seasonality is to 
include dummy variables for each “season.”

• Example:  Suppose we wish to estimate
yt = 1 + 2 t + t using quarterly data.

• Define  d1t = 1  for all observations in the 
first quarter, = 0 otherwise.

• Similarly, define  d2t and  d3t.

Quarterly dummy variables in a data 
spreadsheet

d3td2td1ttytDatet

00111.72010 first quarter1

01022.32010 second quarter2

10032.32010 third quarter3

00042.02010 fourth quarter4

51.62011 first quarter5

62.42011 second quarter6

72.22011 third quarter7

etc.

Seasonal dummy variables

• Then estimate the regression
yt = 1 + 2 t + 3 d1t + 4 d2t + 5 d3t + t

• Note that only __________ dummies are 
used for four seasons.

• If a fourth dummy (d4t) were included, then 
the sum of the dummy variables would 
always be  d1t+d2t+d3t+d4t=1  for every 
observation:  perfect __________________.

Seasonal dummy variables: 
estimation

If  t are IID and the usual assumptions hold, then

• BLUE estimators of β1 through β5 are just the LS 
estimators.

• Unbiased estimator of  σ2 is 𝜎ොଶ =
ଵ

்ିଶ
 ∑ 𝜀௧̂

ଶ்
௧ୀଵ

Interpreting seasonal dummy 
coefficients

• Since the fourth-quarter dummy is omitted, 
the fourth-quarter intercept equals  1 .

• The value of  3 shows how much higher  
yt is in the first quarter than the fourth 
quarter, ceteris paribus—that is, purely 
because of seasonal effects.

• Similarly for  4 and  5 .

Example: housing starts

• This regression was estimated using quarterly data 
(2010 Q1-2024 Q1) for Midwest region:

ln(housing starts)  =  2.227  +  0.013  t 
(0.053)    (0.001)

- 0.454 d1  +  0.180 d2  +  0.119 d3
(0.055)         (0.056)        (0.056)

Source:  FRED, “new Privately-Owned Housing Units Started: Total Units in the
Midwest Census Region, Thousands of Units, Quarterly, Not Seasonally Adjusted.
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Example: interpretation of 
coefficients

• On average, the number of housing starts 
increased by ______% each quarter.

• However, housing starts are on average

• ________% lower in the first quarter

• ________% higher in the second quarter

• ________% higher in the third quarter
than in the fourth quarter.

(using the log approximation for percent changes)

Forecasting with seasonal 
dummies

• Point forecasts simply insert appropriate values of 
time trend and seasonal dummies.

• As before, forecast error is due to (1) errors in 
estimating coefficients and (2) the brand-new error 
term  εT+1 .  There is no covariance if εt is IID.

• The usual formulas for SE of prediction error 
apply.*

*See slideshow, “Prediction and Prediction Intervals with 
Multiple Regression”

Forecast intervals with 
seasonal dummies

Assuming εt is normally-
distributed, then the 95% 
forecast interval is 

𝛽መଵ + 𝛽መଶ 𝑇 + 1

+ 𝛽መଷ𝑑1்ାଵ +  𝛽መସ𝑑2்ାଵ

+ 𝛽መହ𝑑3்ାଵ ± 1.96 𝑆𝐸
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2022 Q2 2024 Q4

Seasonality in monthly data

• With monthly data, __________ dummy 
variables are needed:
yt = 1 + 2 t + 3 djant + 4 dfebt

+ 5 dmart + 6 daprt + 7 dmayt

+ 8 djunt + 9 djult + 10 daugt

+ 11 dsept + 12 doctt + 13 dnovt + t

Conclusions

• Monthly and quarterly data often show “seasonal” 
fluctuations over an annual cycle.

• To control for seasonal fluctuations, include 
dummy variables for “seasons”:  

• _____ dummy variables for quarterly data.

• _____ dummy variables for monthly data.
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STATIONARY AND WEAKLY 
DEPENDENT TIME SERIES

STATIONARY AND WEAKLY 
DEPENDENT TIME SERIES

•What is a “stationary time series?

•What is a “weakly-dependent” series?

•What is a “trend-stationary” series?

Strict exogeneity and 
no serial correlation

• Till now, we have assumed that error terms were 
IID.*

• This assumption led to strong conclusions—that 
LS was unbiased, BLUE, etc.

• They also made forecasting relatively simple.
• However these assumptions are usually 

unrealistic.

*Independent identically distributed.

Compare!

IID series
Residuals from regression of 

M2 on a time trend
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Residuals from regression of 
ln(housing starts) on time 
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Serially-correlated processes

• Here we consider stochastic processes (or 
series) that are not IID.

• But they do satisfy weaker assumptions 
under which LS might still work pretty well.

• We define
• Stationary time series.

• Weakly dependent time series.

Stationary time series: definition

• A stationary time series is one whose distribution 
does _________ change over time.

• For example, if  ut is a stationary time series, then  
ut has the same distribution as  ut-1, ut+1, ut+2 and 
ut+h (where h is any integer).

• This means the density function of  ut does 
__________ change over time.

t=1 t=2 t=3 t=4 t=5

time
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STATIONARY AND WEAKLY 
DEPENDENT TIME SERIES

Moments of a stationary time series

• If a time series is stationary, its 
(unconditional) moments do not change 
over time.

• E(ut) = E(ut+1) = E(ut+2) = E(ut+h) .

• Var(ut) = Var(ut+1) = Var(ut+2) = Var(ut+h).
• But  ut could still be serially-correlated.
• We need some terminology to describe 

serial correlation.

Autocovariances of a 
time series: definition

• Autocovariance = covariance between ut

and one of its own past values.
• First autocovariance = Cov(ut,ut-1).

• Second autocovariance = Cov(ut,ut-2) .

• etc.

• In general, the first autocovariance is not 
equal to the second.

Autocovariance and
serial correlation

• Recall that correlation is related to 
covariance by definition:

• Corr(X,Y) = 

• A series which has nonzero autocovariances
must also have nonzero autocorrelations.

• Also called “serially correlated.”

Autocovariances of a 
stationary time series

• The autocovariances of a stationary time series do 
not change over time.

• Cov(ut,ut-1) = Cov(ut+1,ut) = Cov(ut+h,ut+h-1) .

• Cov(ut,ut-2) = Cov(ut+1,ut-1) = Cov(ut+h,ut+h-2).

• Thus, the covariance between the first and second 
ut is the same as the covariance between the 99th

and ________ ut , and between the 999th and 
________ ut .

Covariance-stationary series: 
definition

• If the means, variances, and 
autocovariances do not change over time, 
the series is called covariance-stationary.

• Covariance-stationarity is a weaker 
condition than stationarity in that it does not 
require that the whole density function be 
constant over time—just means, variances, 
and autocovariances.

IID random variables are a trivial 
example of a stationary time series

• Earlier we considered error terms  t that satisfied  
E(t) = 0, Var(t ) = 2 , and Cov(t,s) = 0 , 
obviously all constant with respect to  t.

• Under these assumptions,   t is a 
________________________________ process.

• If in addition we assume  t is independent 
normally-distributed, then  t is a  ____________  
process.
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STATIONARY AND WEAKLY 
DEPENDENT TIME SERIES

Weakly dependent time series: 
definition

• A weakly dependent times series is one 
where  ut and  ut+h become “more 
independent” as  h  gets larger.

• Thus they become “more independent” the 
____________ apart they are in time.

• This definition is obviously not very 
precise.  More precise definitions are used, 
but they vary according to context.

Asymptotically uncorrelated 
process:  definition

• One precise definition of weak dependence 
requires autocovariances and 
autocorrelations to converge to zero as 
observations are farther and farther apart.

• ut is said to be asymptotically uncorrelated
if  Corr(ut,ut+h)  ___  as h  ________. 

hCov(ut,ut-1) Cov(ut,ut-2) Cov(ut,ut-3) Cov(ut,ut-4)

Weak dependence versus random 
sampling:  intuition

• In a __________ sample, each observation 
is independent and “fresh,”  It contributes 
completely new information to the sample.

• In a ____________________ process, each 
observation is not completely fresh.  But it 
does contribute some new information to 
the sample.  It is not simply a duplicate of a 
previous observation.

IID random variables are a trivial 
example of a weakly dependent series

• In the last section, we sometimes assumed the 
error term  t was independent identically-
distributed.

• Independent random variables obviously and 
trivially satisfy the definition of “weakly 
dependent” because Corr(ut,ut+h) = ____  
for all  h  0. 

hCov(ut,ut) Cov(ut,ut-1) Cov(ut,ut-2) Cov(ut,ut-3)

1

Other weakly dependent time series

• Starting with independent identically-
distributed random variables  t , we can 
define other series that are also weakly 
dependent.

• Examples (see next presentations):
• Moving average (MA) process.

• Autoregressive (AR) process.

A series can be stationary but not 
weakly dependent 

• Suppose all observations in a series are equal to 
each other.

• That is,  ut = ut+1 = ut+2 = ut+3 = ... = ut+h + ...

• All observations share the _________ distribution, 
so this (admittedly strange) series is stationary.

• But  corr(ut, ut+h) = 1 for all values of  h, so this 
series is ________ weakly dependent.
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STATIONARY AND WEAKLY 
DEPENDENT TIME SERIES

A series can be weakly dependent 
but not stationary

• Suppose all observations in a series are 
independent random variables, but with different 
variances (i.e., heteroskedastic).

• For example,  Var(ut)=3, Var(ut+1)=17, 
Var(ut+2)=5, Var(ut+3)=13,  etc.

• Corr(ut, ut+h) = _____, for all h0, so the series is 
weakly dependent.

• But each observation has a different variance, so 
the series is ________ stationary.

A trended series cannot be stationary

• A trended series 
cannot be stationary 
because its mean (the 
time trend) is changing 
over time.

• However, it may be 
stationary around its 
time trend.

• That is,  (ut - trend) 
might be stationary. Time

But a trended series can be weakly 
dependent

• A trended series can 
be weakly dependent.

• Example:  linear trend 
ut = 1 + 2 t + t , 
where t is 
independent.

• Then Corr(ut, ut+h) 
= Corr(t, t+h)
= 0  for all  h > 0. 

Time

Trend-stationary series:  definition

• A trend-stationary series is a trended series 
that is stationary around its trend and 
weakly dependent.

• In other words, subtract the trend and you 
have a stationary, weakly dependent series:

ut = trend  + t ,    
where  t is stationary and 
Corr(t, t+h)  0  as  h  infinity. 

Trend-stationary series:  
examples

TimeTime

________ trend-stationary
Trend-stationary with
____________ trend

Summary:  stationarity
versus weak dependence

Stationary Weakly
dependent

Heteroskedastic
series

Trend-stationary
series

IID process

MA process

AR process

“All-observations-
equal” series
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STATIONARY AND WEAKLY 
DEPENDENT TIME SERIES

Conclusions

• A _________________ series or process is one 
whose distribution does not change over time.

• A ________________________ series is one 
where  ut and  ut+h become “more independent” 
as  h  infinity.

• An asymptotically uncorrelated series is one 
where Corr(ut,ut+h)  0  as  h  infinity.

• A ____________________ series is a trended 
series that is stationary around its trend and 
weakly dependent.
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FIRST-ORDER MOVING AVERAGE PROCESS

FIRST-ORDER MOVING 
AVERAGE PROCESS

•What is an “MA(1)” process?

•Why is it always stationary and 
weakly dependent?

Modeling serial correlation

• In the real world, most time-series are 
serially-correlated.

• For accurate estimation and forecasting, we 
need models of serial correlation that
• fit the data reasonably well, and

• are not excessively complex.

Popular models of 
serial correlation

• Most popular models minimize complexity 
by building models of serial correlated 
random variables (yt) up from other latent 
(unobserved)  random variables that are not
serially correlated (t): 

• Moving average process.

• Autoregressive process.

Definition of first-order moving 
average process (MA(1))

• Suppose  t is an IID* series with E(t)=0 
and Var(t)=

2 .
• Thus Cov(t,s) = 0 whenever t ≠ s. 
• Let  yt = t +  t-1 ,  where   is a 

constant.
• We now show that  yt is stationary, serially 

correlated, and weakly dependent.

*Independent identically distributed.

Compare!

IID series MA(1):  yt = εt + 0.8 εt-1
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Mean of MA(1)

• E(yt) = E(t+t-1) = E(t) +  E(t-1) 
= 0 +  0 = ______.
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FIRST-ORDER MOVING AVERAGE PROCESS

Variance of MA(1)

• Var(yt) = E[(yt-Eyt)2] = E[yt
2] 

= E[(t+t-1)2] = E[t
2 + 2tt-1 + 2t-1

2]
= E[t

2] + 2 E[tt-1] + 2 E[t-1
2]

= Var(t
2) + 2 Cov(t,t-1) + 2 Var(t-1

2).
= 

2 + 2 
2

= (1+2) 
2.

Autocovariances of MA(1)

• Cov(yt,yt-1) = E(ytyt-1) 
= E(t+t-1)(t-1+t-2) 
= E[tt-1] + E[t-1t-1] + E[tt-2] + 2E[t-1t-2] 
=  Var(t-1) =  

2.

• Cov(yt,yt-2) = E(ytyt-2) 
= E(t+t-1)(t-2+t-3) 
= E[tt-1] + E[t-1t-2] + E[tt-3] + 2E[t-1t-3] 
= 0.

• Clearly Cov(yt,yt-h) = 0  for  h>1.

Autocorrelations of MA(1)

• Autocorrelation of a stationary series is defined as 
autocovariance divided by variance.

• Using results on the last two slides gives the 
following.

• Corr(yt,yt-1) = [ 
2] / ([1+2] 

2) = /(1+2).

• Corr(yt,yt-2) = _______.

• Clearly Corr(yt,yt-h) = _______  for  h>1.

hCorr(yt,yt-1) Corr(yt,yt-2) Corr(yt,yt-3) Corr(yt,yt-4)
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Theoretical
autocorrelations

when α= 0.8 .

Autocorrelations of MA(1) process drop 
abruptly to zero

• Like the 
autocovariances, the 
autocorrelations decay 
for an MA(1) process 
drop abruptly to zero 
after 1st

autocorrelation.
• yt and  yt-2 are 

uncorrelated.

Stationarity and weak dependence of 
MA(1) process

• We have shown that E(yt), Var(yt), and 
the autocovariances do not depend on t .

• So  yt is covariance _____________.

• We have shown that Cov(yt,ys) = _____ whenever  
t and  s are more than one period apart.

• So  yt is asymptotically uncorrelated (a form of 
weak dependence).

Estimating an MA(1) model

• To fit actual data, add a constant term:
yt = β1 + t +  t-1 ,

• Estimation is rather complicated but is 
automated in statistical software.

Part 4:  Univariate time series models Page 4-18

STAT 170 - Regression and Time Series © 2024  William M. Boal



FIRST-ORDER MOVING AVERAGE PROCESS

Forecasting 
with an MA(1) model

• One-step-ahead forecast inserts estimated 
coefficients, last residual, and zero (the 
expected value) for T+1:

𝑦ො்ାଵ = 𝛽መଵ + 𝜀்ାଵ + 𝛼 𝜀்̂

• h-steps-ahead forecast inserts zero for all 
future values of t+h:

𝑦ො்ା = 𝛽መଵ + 𝜀்ା + 𝛼 𝜀்ାିଵ

Forecast intervals 
with an MA(1) model

• SEs for coefficients are usually relatively tiny—it 
is common to ignore them when computing 
forecast intervals.

• Assuming εt is normally-distributed, then 95% 
forecast intervals are as follows.

• One-step-ahead: 𝑦ො்ାଵ ± 1.96 𝜎ොఌ
ଶ

• h-steps-ahead, h>1: 𝑦ො்ା ± 1.96 1 + 𝛼ොଶ 𝜎ොఌ
ଶ

Example: real interest rate 
1962-2022 

• Definition:  Treasury one-year rate minus 
inflation rate (CPI).

• Sample mean = 1.058 (percent).

• yt =  1.023   +   εt    +   0.799   ε t-1
(0.387)                (0.075) 

• 𝜎ොఌ
ଶ = 2.862

Example: real interest rate 
1962-2022 (cont’d) 

Extension:  MA(q)

• yt = β1 + t + 1 t-1 + 2 t-2 + ... + q t-q ,  
where β1 and s are constants.

• Autocovariances Cov(yt,yt-h) and 
autocorrelations Corr(yt,yt-h) depend on  h 
but not  t,  and are zero for h>q.

• MA(q) process is therefore stationary and 
weakly dependent.

Conclusions

• The MA(1) process is defined as  
yt = t +  t-1 , where t is an IID process with 
mean ________.

• The MA(1) process is always stationary.

• Autocovariances and autocorrelations are nonzero 
for one period’s lag, but _________ thereafter.

• Point forecasts and forecast intervals are constant 
beginning two steps ahead.
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FIRST-ORDER AUTOREGRESSIVE PROCESS

FIRST-ORDER 
AUTOREGRESSIVE PROCESS

•What is an “AR(1)” process?

•When is it weakly dependent?

Definition of first-order 
autoregressive process (AR(1))

• Suppose  t is an independent identically-
distributed (IID) series with E(t) = 0 and 
Var(t) = 2 .

• Thus Cov(t,s) = 0 whenever t ≠ s. 

• Let  yt = ϕ yt-1 + t.  Assume || < 1.

• Assume the initial value  y0 is independent 
of all the  t , for t >0.

Compare!

IID series AR(1):  yt = 0.8 yt-1 + εt
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Properties of AR(1)

• Note that  yt depends on the current  t and 
depends (through  yt-1) on past  t , but does  
not depend on future values of  t .

• Thus Cov(yt, s) = _____  for all s>t.
• If  | ϕ | < 1,  it can be shown that the AR(1) 

process is stationary.
• We assume stationarity and show that  yt is 

serially correlated and weakly dependent.

Mean of AR(1)

• Now E(yt) = E(ϕ yt-1 + t) = ϕ E(yt-1) + E(t)
= ϕ E(yt-1) , since E(t) = 0.

• By stationarity, E(yt) = E(yt-1) so
E(yt) = ϕ E(yt)

• So (1- ϕ) E(yt) = 0.  Therefore E(yt) = ____.

Variance of AR(1)

• Now Var(yt) = Var(ϕ yt-1 + t) 
= ϕ2 Var(yt-1) + Var(t) + 2 ϕ Cov(yt-1,t).

• Now Cov(yt, s) = 0  for all  s>t, 
so Var(yt) = ϕ2 Var(yt-1) + Var(t).

• By stationarity, Var(yt-1) = Var(yt), 
so Var(yt) = ϕ2 Var(yt) + 2 .

• So (1- ϕ2) Var(yt) = 2.
• Therefore Var(yt) = 2 / (1- ϕ2).
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FIRST-ORDER AUTOREGRESSIVE PROCESS

Autocovariances of AR(1)

• Begin by writing  yt+h = ϕ yt+h-1 + t+h

= ϕ (ϕ yt+h-2 + t+h-1) + t+h

= ϕ2 yt+h-2 + ϕ t+h-1 + t+h

= ϕ2 (ϕ yt+h-3 + t+h-2) + ϕ t+h-1 + t+h

= ϕ3 yt+h-3 + ϕ2 t+h-2 + ϕ t+h-1 + t+h

…
= ϕhyt + ϕh-1t+1 +…+ ϕ2t+h-2 + ϕt+h-1 + t+h

Pattern of autocovariances

• Now Cov(yt, s) = 0  for all s > t.
• So for  h > 0,  

Cov(yt, yt+h) = Cov(yt, ϕh yt) = ϕh Var(yt).
• Assuming  | ϕ | < 1,  then the autocovariances 

decrease (in absolute value) as  h  increases.
• In other words, the longer the time interval 

between two observations  yt and  yt-h, the 
___________ their covariance (in absolute value).

• But the covariance never reaches _________.

Pattern of autocovariances:  example

• Suppose  Var(yt) = 5  and ϕ = 0.5 .

• Then  Cov(yt,yt+1) = (0.5)1  5 = 5/2, 
Cov(yt,yt+2) = (0.5)2  5 = ______, 
Cov(yt,yt+3) = (0.5)3  5 = ______, 
Cov(yt,yt+4) = (0.5)4  5 = ______, etc. 

hCov(yt,yt-1) Cov(yt,yt-2) Cov(yt,yt-3) Cov(yt,yt-4)

Autocorrelations of AR(1)

• Autocorrelation of a stationary series is defined as 
autocovariance divided by variance.

• So here, the h-th autocorrelation
Corr(yt, yt+h) = Cov(yt, yt+h) / Var(yt) .

• We already showed that for  h > 0,
Cov(yt, yt+h) = ϕh Var(yt).

• So for  h > 0,
Corr(yt, yt+h) = [ϕh Var(yt)] / Var(yt) = ϕh.

Pattern of autocorrelations:  example

• Again, suppose ϕ = 0.5 .

• Then  Corr(yt,yt+1) = (0.5)1 = 0.5, 
Corr(yt,yt+2) = (0.5)2 = ________, 
Corr(yt,yt+3) = (0.5)3 = ________, 
Corr(yt,yt+4) = (0.5)4 = ________, etc. 

hCorr(yt,yt-1) Corr(yt,yt-2) Corr(yt,yt-3) Corr(yt,yt-4)

Autocorrelations of AR(1) 
decay toward zero

• Like the 
autocovariances, the 
autocorrelations decay 
with  h,  the time 
interval between yt
and yt+h . 

• The decay factor is ϕ.
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FIRST-ORDER AUTOREGRESSIVE PROCESS

Weak dependence of AR(1) process

• Assuming  ϕ is less than one in absolute 
value, then as h  infinity, 
• Cov(yt, ϕh yt) = ϕh Var(yt)  _____.

• Corr(yt, yt+h) = ϕh  _____.

• So  yt is asymptotically uncorrelated
(a form of weak dependence).

Estimating an AR(1) model

• To fit actual data, add a constant:
yt = β1 + ϕ yt-1 + t .

• Can be estimated by ordinary least squares 
after dropping the first observation (because  
y0 is not observed).

• Other estimation methods keep the first 
observation and impute  y0 somehow.

Forecasting 
with an AR(1) model

• One-step-ahead forecast inserts estimated 
coefficients, last actual yT and zero (the expected 
value) for T+1:

𝑦ො்ାଵ = 𝛽መଵ + 𝜑ො𝑦் + 𝜀்ାଵ

• Two-steps ahead forecast inserts first forecast:
𝑦ො்ାଶ = 𝛽መଵ + 𝜑ො 𝑦ෝ ்ାଵ

• h-steps-ahead forecast recursively inserts prior 
forecasts:

𝑦ො்ା = 𝛽መଵ + 𝜑ො 𝑦ෝ ்ାିଵ

Forecasting 
with an AR(1) model

• One-step-ahead forecast inserts estimated 
coefficients, last actual yT and zero (the expected 
value) for T+1:

𝑦ො்ାଵ = 𝛽መଵ + 𝜑ො𝑦் + 𝜀்ାଵ

• Two-steps ahead forecast inserts first forecast:
𝑦ො்ାଶ = 𝛽መଵ + 𝜑ො 𝑦ෝ ்ାଵ

• h-steps-ahead forecast recursively inserts prior 
forecasts:

𝑦ො்ା = 𝛽መଵ + 𝜑ො 𝑦ෝ ்ାିଵ

Forecast intervals 
with an AR(1) model

• SEs for coefficients are usually relatively tiny—it 
is common to ignore them when computing 
forecast intervals.

• Assuming εt is normally-distributed, then 95% 
forecast intervals are as follows.

• One-step-ahead: 𝑦ො்ାଵ ± 1.96 𝜎ොఌ
ଶ

Forecast intervals with an AR(1) 
model: two steps ahead

• Substitution shows that 
yT+2 = β1 + ϕ yT-1 + T+2

= β1 + ϕ (β1+ ϕ yT + T+1) + T+2

= β1 (1+ ϕ) + ϕ2 yT + T+2 + ϕ T+1

• So 𝑉𝑎𝑟 𝑦ො்ାଶ = 𝑉𝑎𝑟 𝜀்ାଶ + 𝜑𝜀்ାଵ

= 𝜎ఌ
ଶ 1 + 𝜑ଶ

• Two-steps-ahead interval:

𝑦ො்ାଶ ± 1.96 𝜎ොఌ
ଶ 1 + 𝜑ො ଶ
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Forecast intervals with an AR(1) 
model:  h steps ahead

• Repeated substitution shows that 
yT+h = β1 (1+ ϕ + ϕ2 +...+ ϕh) + ϕh yT

+ T+h + ϕ T+h-1 + ϕ2 T+h-2 +...+ ϕh T+1

• So 𝑉𝑎𝑟 𝑦ො்ା

= 𝑉𝑎𝑟 𝜀்ା + 𝜑𝜀்ାିଵ + ⋯ + 𝜑𝜀்ାଵ

= 𝜎ఌ
ଶ 1 + 𝜑ଶ + ⋯ + 𝜑ଶ

• h-steps-ahead interval:

𝑦ො்ା ± 1.96 𝜎ොఌ
ଶ 1 + 𝜑ො ଶ + ⋯ + 𝜑ො ଶ

Example: real interest rate 
1962-2022

• Definition:  Treasury one-year rate minus 
inflation rate (CPI).

• Sample mean = 1.058 (percent).

• yt =  0.697   +   0.824   y t-1 +   εt 

(1.023)     (0.078) 

• 𝜎ොఌ
ଶ = 2.218

Example: real interest rate 
1962-2022 (cont’d) 

Extension:  AR(p)

• yt = β1 + ϕ1 yt-1 + ϕ2 yt-2 + ... + ϕp yt-p + t ,  
where β1 and the ϕs are constants.

• Autocovariances Cov(yt, yt-h) and autocorrelations 
Corr(yt, yt-h) depend on  h  but not on  t,  and 
approach zero as h  infinity if  ∑ 𝜑

ାଵ
ୀଶ .*

• AR(p) process is therefore stationary and weakly 
dependent.

*This condition is sufficient.  Necessary conditions are weaker but harder to check.

Conclusions

• The AR(1) process is defined as 
yt = ϕ yt-1 + t , where t is an IID process with 
mean __________.

• If  | ϕ | < 1,  the AR(1) process is stationary.

• Autocovariances and autocorrelations are never 
zero, but they decay with factor ϕ,  so AR(1)  is 
______________________.

• Point forecasts are recursive and converge 
gradually to sample mean.  Forecast intervals are 
bounded.
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ARMA(p,q) PROCESS

• What is an ARMA(p,q) process?
• How can we determine p and q?

Definition of ARMA(1,1) 
process

• Suppose  t is an independent identically-
distributed (IID) series with E(t) = 0 and 
Var(t) = 

2 .

• Let  yt = β1 +  ϕ yt-1 + t + α t-1 .

• Assume  | ϕ | < 1  and | α | < 1.

• Clearly, AR(1) and MA(1) are special cases 
when α=0  or  ϕ=0.

Definition of ARMA(p,q) 
process

• Again,  t is an independent identically-
distributed (IID) series with E(t) = 0 and 
Var(t) = 

2 .

• Let  yt = β1 + ϕ1 yt-1 + ... + ϕp yt-p

+ t + α1 t-1 + ... + αq t-q .

• Assume ∑ 𝜑

ୀଵ < 1 and ∑ 𝛼


ୀଵ < 1 .

• Clearly, AR(p) and MA(q) are special 
cases.

Estimation and forecasting with 
an ARMA(p,q) model

• Estimation (𝛽መଵ, 𝜑ොs, and 𝛼ොs) is complicated, 
but statistical software handles this.

• Point forecasts converge gradually to the 
sample mean.

• Forecast intervals are bounded.

Example: ARMA(1,1) model of 
real interest rate, 1962-2022

• Definition:  Treasury one-year rate minus 
inflation rate (CPI).

• Sample mean = 1.058 (percent).

• yt =  0.794  +  0.758   y t-1 +  εt +  0.171  εt-1 

(0.885)   (0.128)                    (0.211)

• 𝜎ොఌ
ଶ = 2.193

Example: ARMA(1,1) model of 
real interest rate (cont’d) 
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How to “identify” an 
ARMA(p,q) process

How can we determine which ARMA(p,q) model 
best fits our data?  Several methods.

(1) Plot autocorrelation function and partial 
autocorrelation function.  This is the approach 
originally suggested by Box and Jenkins.

G.E.P. Box and G.M. Jenkins, Time Series Analysis, Forecasting, and Control,
Holden-Day, 1976, pp. 173-186.

How to “identify” an 
ARMA(p,q) process (cont’d)

(2) In practice, a good fit usually can be obtained 
with  p  and  q  each < than 3.  So estimate 
ARMA(3,3) and drop statistically insignificant 
coefficients, starting with  α3 and  ϕ3 .

(3) Estimate all combinations of  p  and  q.  Choose 
model with lowest Akaike Information Criterion 
(AIC).

If two models seem to fit the data equally well, 
choose the simpler model.

(1) Plot autocorrelation function 
and partial function 

• We have seen that the autocorrelation 
functions are quite different for an MA(1) 
process versus an AR(1) process.
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Autocorrelations of ARMA(0,q)=MA(q) 
process drop abruptly to zero

• Autocorrelations for 
an MA(1) process 
drop abruptly to zero 
after 1st

autocorrelation.
• Autocorrelations for 

an MA(q) process 
drop abruptly after qth

autocorrelation.

Autocorrelations of ARMA(p,0)=AR(p) 
process decay toward zero

• Autocorrelations for 
an AR(1) process 
decay toward zero 
with constant factor.

• Autocorrelations for 
an AR(p) process also 
decay but with waves.
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Theoretical 
autocorrelations

when ϕ= 0.8 .

Example: real interest rate
autocorrelation function
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Limitations of autocorrelation 
functions

• Autocorrelations cannot be estimated 
exactly in finite sample.  So need to check 
significance.

• Autocorrelations for AR(p) and ARMA(p,q) 
models look similar, decaying possibly with 
waves.  Need another tool.

Partial autocorrelation function

• If autocorrelations decay slowly, check the 
partial autocorrelation function (PAC).

• The first PAC is the coefficient of  yt-1 in 
yt = β1 + ϕ1 yt-1 + t .

• The second PAC is the coefficient of  yt-2 in
yt = β1 + ϕ1 yt-1 + ϕ2 yt-2 + t .

• Etc.

Interpreting the PAC

• PAC for an AR(1) 
process drops abruptly 
to zero after 1st partial 
autocorrelation.

• PACs for an AR(p) 
process drop abruptly 
after pth partial 
autocorrelation.

• PACs decay slowly 
for ARMA(p,q).

0
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

Theoretical partial
autocorrelations 
for AR(1) when 

ϕ= 0.8 .

Example: real interest rate
partial autocorrelation function

(1)      (2)      (3)      (4)      (5)      (6)   
-----------------------------------------------------------------------
ar1               0.824*** 0.895***                   0.758***  0.026  

(0.078)  (0.127)                    (0.128)  (0.108) 

ar2                         -0.093                             0.621***
(0.133)                             (0.110) 

ma1                                 0.799*** 0.947***  0.171   1.000***
(0.075)  (0.114)  (0.211)  (0.067) 

ma2                                          0.260***                  
(0.097)                   

intercept          0.697    0.769   1.023*** 1.012**   0.794    0.716  
(1.023)  (0.918)  (0.387)  (0.450)  (0.885)  (0.968) 

-----------------------------------------------------------------------
Observations         61       61       61       61       61       61   
Log Likelihood    -111.425 -111.178 -119.138 -116.020 -111.069 -108.826
sigma2             2.218    2.201    2.862    2.586    2.193    1.963  
Akaike Inf. Crit. 228.849  230.356  244.276  240.039  230.137  227.651 
=======================================================================
Note:                                       *p<0.1; **p<0.05; ***p<0.01

(3) Choose model with lowest AIC
Conclusions

• An ARMA(p,q) process combines an AR(p) 
process with a MA(q) process, and is defined as  
yt = β1 + ϕ1 yt-1 + ... + ϕp yt-p

+ t + α1 t-1 + ... + αq t-q .

• To determine  p  and  q, 

1) Plot autocorrelation and partial autocorrelation 
functions of the data (_________________).

2) Check t-statistics of estimated coefficients.

3) Check AIC values of estimated models.
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HIGHLY PERSISTENT 
TIME SERIES

• What kinds of time series are NOT 
weakly dependent?

• What is a “random walk”?

Highly persistent series

• Highly persistent (or strongly dependent) 
time series show some sort of dependence 
between  yt and  yt+h that does ________
disappear as h increases.

• When these variables are used in regression 
analysis, the LS properties of consistency 
and asymptotic normality do ________
necessarily apply.

Random walk process

• A simple example of a highly persistent 
series is the random walk process:

yt = yt-1 + t

where  t is an independent identically-
distributed series with E(t)=0 and 
Var(t)=2 (constant).

• This is like an AR(1) process with  = ___.

Behavior of a random walk process

• As the name suggests, a random walk 
process wanders randomly.

• Each value  yt is equal to the prior value  
yt-1 plus a random “step”  t.

• Thus each value  yt is just an accumulation 
of random steps, some positive and some 
negative, from a starting value (y0):

yt = y0 + 1 + 2 + … + t.

Three realizations of a random walk 
with  t ~ N(0,1)  and  y0 = 0

Mean of random walk is constant

• E(yt) = E(y0 + 1 + 2 + … + t)
= E(y0) + E(1) + E(2) + … + E(t)
= E(y0) + 0 + 0 + … + 0
= E(y0).

• So E(yt) is _______________ for all  t.
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Variance of random walk is 
ever-increasing

• Var(yt) = Var(y0 + 1 + 2 + … + t)
= Var(y0) + Var(1) + Var(2) + … + Var(t)
= Var(y0) + t 2 .

• Usually it is assumed that  y0 is 
nonrandom, in which case Var(yt) = t 2 .

• Because a random walk’s variance increases 
with  t,  a random walk process is _______ 
stationary.

The persistent effects of each yt on 
future y’s

• For any positive integer h, we can write  
yt+h = yt + t+1 + t+2 + … + t+h.

• So E(yt+h|yt)
= yt + E(t+1) + E(t+2) + … + E(t+h) 
= _____.

• Contrast this with an AR(1) process, for 
which E(yt+h|yt) gradually decays back to its 
unconditional mean  E(yt+h) .  An AR(1) 
process does ________ wander off.

Unit root process

• A random walk is special case of a unit root 
process.
• Name comes from AR(1) with =1.

• Any unit root process can also be expressed 
as  yt = yt-1 + t , but now  t need not be 
independent and need not have E(t)=0.

• Instead,  t can be any weakly dependent 
process.  For example  t itself could be 
AR(1) or MA(1).

Properties of a unit root process

• The random walk is just one example of a 
unit-root process.

• Other unit-root processes have different 
formulas for E(yt) and Var(yt).

• However, all unit root processes are highly 
persistent (or strongly dependent).

• The effect of  yt on future  yt+h does
_______ disappear as  h  infinity.

Random walk with drift

• Random walk with drift:
yt = β1 + yt-1 + t.

where  β1 is a constant and  t is an 
independent identically-distributed series 
with E(t) = 0 and Var(t) = 2 .

• Here,  β1 is called the “drift term.”
• On average,  yt increases by _____ from 

one period to the next.

Mean of random walk with drift 
is not constant

• Here,  yt is an accumulation of random 
steps, plus constant steps, from a starting 
value:  yt = y0 + β1 t + 1 + 2 + … + t.

• Thus E(yt) = y0 + β1 t  (if y0 is nonrandom).

• Also, E(yt+h|yt) = yt + β1 h. 
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Variance of random walk with drift 
is ever-increasing

• Var(yt) = Var(y0 + β1 t + 1 + 2 + … + t ) 
= Var(y0) + Var(t) + Var(1) + Var(2) + … 

+ Var(t)
= Var(y0) + t 2 .

• Ever-increasing, like a random walk without drift.

• Usually it is assumed that  y0 is nonrandom 
(sometimes 0) in which case Var(yt) = _______.

• Because the mean and variance of a random walk 
with drift depend on  t,  it is ________ stationary.

One realization of a random walk 
with drift:  yt = 0.5 + yt-1 + t ,  

with  t~ N(0,1) and y0 = 0

yt = 0.5 + yt-1

yt = 0.5 + yt-1 + t

Trends versus unit roots

• Unit-root series, such as random walks, are 
“highly persistent” or “strongly dependent.”

• They do not revert to any fixed mean value.

• But there are other series which are weakly 
dependent and yet have the same property 
of not reverting to any fixed value.

Trend-stationary process

• Example:  
yt = 1 + 2 t + t
where  t is weakly 
dependent.

• It does not revert back 
to any fixed value.

• But it keeps reverting 
back to 1 + 2 t ,  its 
______________. Time

yt

Trend line:
slope = 2

Contrast with random walk with 
drift

• A random walk with 
drift is given by:
yt = β1 + yt-1 + t.

• It also has a “trend”:
y0 + β1 t .

• But it gradually 
________________
from its trend.

Time

yt

Trend line:
slope = 

y0

Random walk with drift versus 
trend-stationary process: examples
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Stationary weakly-dependent 
process:  intuition

• If  yt is stationary and weakly-dependent, it keeps 
reverting back to its mean.

• Like a dog on a leash, whose owner’s path is 
visible.  To forecast dog’s location, use owner’s 
path.

Time

Owner’s path = E(yt)

Trend-stationary process:  intuition

• If  yt is trend-stationary, it keeps reverting back to 
a fixed path, which can be estimated.

• Like a dog on a leash, whose owner’s path is 
_________ visible but can be inferred.  To 
forecast dog’s location, use owner’s path.

Time

Unit-root process:  intuition

• If  yt has a unit root, it wanders randomly over 
time, sometimes far from its mean.

• Like a dog with a broken leash, not connected to 
any owner.  Owner’s path cannot be used to
forecast dog’s location.

Time

Trend-stationary or unit-root?  
Hard to tell from data!

• Unfortunately, it is 
hard to tell if a process 
is trend-stationary or 
unit-root just by 
looking at data.

• Without seeing the 
trend line, it is difficult 
to tell whether the 
series even has one.

Time

yt

Why unit roots matter for 
forecasting

• If a process has a unit root, it gradually 
wanders randomly away.

• A random walk wanders away randomly 
from its initial value  _______.

• A random walk with drift wanders away 
randomly from its trend ___________.

Why unit roots matter for 
forecasting (cont’d)

• So it is very difficult to forecast a unit-root 
process, even if we know its trend.

• __________-term forecasts are completely 
unreliable.

• Only very ________-term forecasts are 
reliable but they require very recent data.

• Example:  stock prices.

Part 4:  Univariate time series models Page 4-30

STAT 170 - Regression and Time Series © 2024  William M. Boal



HIGHLY PERSISTENT TIME SERIES

Why unit roots matter for 
economic policy

• If GDP has a unit root, for example, then 
any changes in GDP persist ____________.  

• The economy is “permanently scarred” by 
recessions and “permanently strengthened” 
by booms.

• By contrast, if GDP is ________________, 
then the effects of recessions and booms 
eventually disappear.

Highly-persistent (or
strongly-dependent)
processes

Random walk 
with drift: 

yt=1+yt-1+t

Random walk 
without drift:

yt=yt-1+t

Trend-
stationary:

yt=1+2t+t

Weakly-
dependent
processes

MA(1): 
yt=t+t

AR(1): 
yt=ϕyt+t

Assumet is i.i.d.

Conclusions

• Highly persistent series show dependence between  
yt and  yt+h that does ________ disappear as  h  
increases.

• Examples include the random walk and the 
random walk with drift.

• Unit root series are a broad class of highly 
persistent series.

• Unit root series can look like _________________ 
series but they are much more difficult to forecast.
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RANDOM WALK

• How can we recognize, estimate, 
and forecast a random walk 
process?

Random walk and 
random walk with drift

• Let  t be an independent identically-
distributed (IID) series with E(t) = 0 and 
Var(t) = 

2 (constant).

• Simple random walk:  yt = yt-1 + t .

• Random walk with drift:  yt = β1 + yt-1 + t.

How can we recognize a random 
walk or a random walk with drift?

(1) Plot autocorrelation function.  If series is 
nonstationary, will be very high and decrease 
slowly.

(2) Formal test:  Dickey-Fuller.

Example:  simple random walk

yt = yt-1 + εt , where εt ~ N(0,1) and y0 = 0

Example:  autocorrelation
function (AC) for random walk 
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Example:  random walk with drift

yt = yt-1 + 0.5 + εt , where εt ~ N(0,1) and y0 = 0
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Example:  autocorrelation function 
(AC) for random walk with drift 
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Caution about AC plots

• Estimated autocorrelations are biased down 
if true autocorrelations are high.

• So suspect random walk if first 
autocorrelation > 0.85 or 0.90.

• However, trend stationary processes also 
produce very high autocorrelations that 
decrease slowly.

Dickey-Fuller test

• Consider  yt = β1 + β2 t + β3 yt-1 + εt .
• Simple random walk:  0 = β1 = β2 and β3 = 1.

• Random walk with drift:  0 = β2 and β3 = 1.

• Trend stationary process:  0 = β3 .

• AR(1):  0 = β2 and β3 < 1.

• We seek to test  H0:  β3 = 1 (random walk).

• But it turns out that LS 𝛽መଷ is not consistent 
under H0.

Dickey-Fuller test (cont’d)

• So instead subtract yt-1 from both sides and 
estimate by LS:
Δyt = β1 + β2 t + γ yt-1 + εt , where γ = (β3-1).

• Then test  H0:  γ = 0 (nonstationary).

• It turns out LS  𝛾ො is consistent, but not 
normally distributed (even asymptotically).

• Dickey and Fuller worked out the 
distribution and critical values of  𝛾ො .

Example:  Dickey-Fuller test

• For the simple random walk example above, 
test statistic = -3.155, p-value = 0.111.
• So cannot reject  H0:  γ = 0 (nonstationary).

• For the random walk with drift example 
above, test statistic = -2.665, p-value = 
0.308.
• Again, cannot reject  H0:  γ = 0 (nonstationary).

Caution about Dickey-Fuller test

• Not a powerful test.

• If series is actually stationary, test often still 
fails to reject  H0:  γ = 0 (nonstationary).
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How can we estimate a 
random walk model?

• Random walk with drift:
yt = β1 + yt-1 + t.

• Subtract  yt-1 from both sides:
Δyt = yt – yt-1 = β1 + t.

• 𝛽መଵ= sample mean of Δyt .
𝜎ොఌ

ଶ= sample variance of Δyt .

• For simple random walk, 𝛽መଵ= 0.

How can we forecast a 
simple random walk?

• Suppose at time  t we want to forecast yt+1 .

• Now,   yt+1 = yt + t+1 .

• At time  t we know yt but not t+1 .

• Our best forecast is the conditional mean 
E(yt+1|yt) = yt + 0 = yt .

How can we forecast a 
simple random walk? (cont’d)

• Suppose at time  t we want to forecast yt+h .

• Similarly, yt+h = yt + t+1 + ... + t+h .

• Best forecast is conditional mean
E(yt+h|yt) = yt + E(t+1) + ... + E(t+h ) 
= yt + 0 + ... + 0 = yt .

• At time  t, our best forecast of  yt+h is 
simply the current value  yt ,  no matter how 
far we look into the future.

Example:  forecasting a 
simple random walk

• Suppose at time  t = 6,  y6 = 22.

• Best forecast of  y7 = _______.

• Best forecast of  y17 = _______.

• Best forecast of  y107 = _______.

Forecast interval for 
simple random walk

• Variance of forecast error = Var(yt+h|yt) 
=  0   + Var(t+1) + ... + Var(t+h )
=  0   +  h 𝜎ఌ

ଶ .

• This can be estimated as  (h 𝜎ොఌ
ଶ).

• Example:  suppose at time  t = 6,  y6 = 22, 
and  𝜎ොఌ

ଶ = 4,

• Then the 95% forecast interval at time  t+h
is  22 ± 1.96 ℎ 4 .

Example: forecasting a 
simple random walk

0
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Point forecast Lower 95% Upper 95%
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How can we forecast a 
random walk with drift?

• Suppose at time  t we want to forecast yt+1 .

• Now,   yt+1 = β1 + yt + t+1 .

• At time  t we know yt but not t+1 .

• Best forecast is conditional mean 
E(yt+1|yt) = β1 + yt + E(t+1) 
= β1 + yt + 0 = yt + β1 .

How can we forecast a 
random walk with drift? (cont’d)
• Suppose at time  t we want to forecast yt+h .

• Now,  yt+2 =  β1 + (β1 + yt + t+1 ) + t+2

= yt + 2 β1 + t+1 + t+2 .

• Similarly,  yt+h = yt + h β1 + t+1 + ... + t+h .

• Best forecast is conditional mean  
E(yt+h|yt) = yt + h β1 + E(t+1) + ... + E(t+h ) 
= yt + h β1 + 0 + ... + 0 = yt + h β1

• Estimate as  yt + h 𝛽መଵ,  a line.

Example:  forecasting a 
random walk with drift

• For example, suppose we have a random 
walk with drift:   yt = β1 + yt-1 + t .

• Suppose at time  t = 6,  y6 = 22,  𝛽መଵ = 2 .

• Best forecast of y7 = 22 + 2 = _______.

• Best forecast of y16 = 22 + 2(10) = _______.

Forecast interval for 
random walk with drift

• Variance of forecast error = Var(yt+h|yt) 
=  0 + Var(h 𝛽መଵ) + Var(t+1) + ... + Var(t+h )
=  0 + Var(h 𝛽መଵ) +  h 𝜎ఌ

ଶ .

• Var(h 𝛽መଵ) is typically small and ignored in 
practice.

• So variance of forecast error estimated as  
(h 𝜎ොఌ

ଶ).

Example:  forecast interval for 
random walk with drift

• Example:  suppose at time  t = 6,  y6 = 22, 
𝛽መଵ = 2,  and  𝜎ොఌ

ଶ = 4.

• Then the 95% forecast interval at time  t+h
is  22 + 2ℎ ± 1.96 ℎ 4 .

• Forecast interval does _______ converge, 
unlike ARMA(p,q).

Example: forecasting a 
random walk with drift
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Conclusions

• Random walks can be distinguished from 
stationary processes using the autocorrelation 
function plot or a Dickey–Fuller test.

• The intercept  β1 and the error-term variance  σ2

are estimated after differencing the data.

• Point forecasts are simple to compute.

• But forecast intervals do not converge, so long-
term forecasts are not reliable.
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ARIMA(p,d,q) PROCESS

• What is an ARIMA(p,d,q) process?
• How can we determine p, d, and q?

Definition of ARIMA(p, d, q) 
process

• A time series  yt follows an ARIMA(p,d,q) 
process if when yt is differenced  d  times, it 
follows an ARMA(p,q) process.

• Flexible framework for modeling stationary 
or nonstationary time series (depending on 
d), with or without serial correlation 
(depending on p and q).

Differencing notation

• First differences: Δyt = yt – yt-1 .

• Second differences: 
Δ2yt = Δyt – Δyt-1

= (yt – yt-1) – (yt-1 – yt-2)
= yt – 2 yt-1 + yt-2 .

• Third differencing is possible in theory but 
never necessary in practice.

ARIMA(p,d,q) process:  
examples

• ARIMA(___________):
Δyt = β1 + ϕ1 Δyt-1 + ϕ2 Δyt-2 + t + α1 t-1 .

• ARIMA(____________):
yt = β1 + ϕ1 yt-1 + ϕ2 yt-2 + t + α1 t-1 + α2 t-2 .

• ARIMA(____________):
Δ2yt = β1 + ϕ1 Δ2yt-1 + t + α1 t-1 + α2 t-2 .

Box-Jenkins method

(1) “Identification”:  Determine degree of 
differencing needed to achieve stationarity.  
Then determine p and q for differenced series.

(2) Estimation:  Estimate  β1 , ϕs, and αs.

(3) Forecasting:  Use 𝛽መଵ, 𝜑ොs, and 𝛼ොs to 
compute point forecasts and intervals.

G.E.P. Box and G.M. Jenkins, Time Series Analysis, Forecasting, and Control,
Holden-Day, 1976, pp. 173-186.

(1) Identification:  determine 
degree of differencing

• Plot autocorrelation (AC) function.  If series 
is nonstationary, AC will be very high and 
decrease slowly.

• Formal test:  Augmented Dickey-Fuller 
test.*

• If series seems nonstationary, compute first 
differences  Δyt and repeat.

* “Augmented” with extra lags to accommodate possible serial correlation.
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(1) Identification:  determine 
p and q for differenced series

• Plot autocorrelation (AC) and partial 
autocorrelation (PAC) functions.

• If AC drops off abruptly after  n  lags, then  
p = 0 and q = n.

• If PAC drops off abruptly after  n  lags, then  
p = n and q = 0.

• If neither of the above, then p>0 and q>0.

(1) Identification:  determine 
p and q for differenced series

• Alternatively, estimate all reasonable 
combinations of  p  and  q.  Choose model 
with lowest AIC.

• In practice, no reason for  p  or  q  greater 
than 3.*

• If two models seem to fit the data equally 
well, choose the simpler model.

*Except for seasonal effects, not covered here.

(2) Estimation: 𝛽መଵ, 𝜑ොs, and 𝛼ොs 

• Complicated, but statistical software 
handles this.

• If d = 0 (stationary), same as ARMA 
process.

• If d > 0 (nonstationary), then  β1 is often 
assumed to be ___________.

(3) Forecasting:  yT+1, yT+2, etc.

• If  d = 0  (stationary, ARMA) then
• Point forecasts converge to the sample mean.

• Forecast intervals are bounded.

• If  d > 0  (nonstationary) then
• Point forecasts converge to a line.

• Forecast intervals do not converge.

Example: raw data
Example:  AC plot (after taking logs)
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Example:  AC plot 
(after taking logs and differencing)

Example:  PAC plot 
(after taking logs and differencing)

Some models with d=1 
and no drift terms

(1)      (2)       (3)      (4)   
------------------------------------------------------
ar1               0.924*** 0.918*** 0.960***  0.851***

(0.042)  (0.129)   (0.114)  (0.074) 

ar2                         0.006   -0.542***         
(0.132)   (0.164)          

ar3                                 0.542***          
(0.114)          

ma1                                           0.434** 
(0.200) 

------------------------------------------------------
Observations         76       76       76        76   
Log Likelihood    210.677  210.678   220.149  211.071 
sigma2             0.0002   0.0002   0.0002    0.0002 
Akaike Inf. Crit. -417.354 -415.357 -432.299  -416.142
======================================================

Example:  forecast with 
ARIMA(3,1,0) and no drift term

Best model with d=1 and drift term
(1)       

-----------------------------
ar1               0.895***

(0.116)  

ar2              -0.5426***         
(0.1600)          

ar3               0.4744***          
(0.1175)          

Drift             0.0325*** 
(0.0079) 

-----------------------------
Observations         76    
Log Likelihood    222.68 
sigma2            0.0002 
Akaike Inf. Crit. -435.36
=============================

Example:  forecast with 
ARIMA(3,1,0) and drift term
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ARIMA(p,d,q) PROCESS

Conclusions

• If  yt is nonstationary, and follows an ARMA(p,q)  
process only after differencing  d  times, then  yt

follows an ARIMA(p,d,q) process. 

• Parameter  d  can be identified from the AC plot 
and/or an augmented Dicky-Fuller test.

• Parameters  p  and  q  can be identified from AC 
and PAC plots and/or from comparing AIC values.

• If d > 0 (nonstationary) then forecasts converge to 
a line and forecast intervals do not converge.
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SPURIOUS REGRESSION

SPURIOUS REGRESSION

• Can we trust regression results from 
trended series?

Trends in time series

• Many time series show clear upward or 
downward trends.

• Two trended variables will appear 
correlated even if they are unrelated in any 
way:  so-called “spurious regression.”

Example:  two unrelated trended data series

SOURCES:  Enrollment:  National Center for Educational Statistics, Indicator 22.
Cheese price index:  USDA Economic Research Service, Consumer Price Index:
Cheese (from Bureau of Labor Statistics).

Example:  actual values and least-
squares fitted values for

enrollmentt = 1 + 2 price of cheeset

Example:  least-squares estimates for 
enrollmentt = 1 + 2 price of cheeset

• R2 = 0.91955.

• Adjusted R2 = 0.91589.

P-valuet Stat
Standard 

ErrorCoefficients

8.4E-1314.60279.034075.26Intercept

1.6E-1315.862.1133.48Price of cheese

Avoiding spurious regression by 
controlling for trends

• To investigate whether time series are truly 
related, we must control for trends.

• This can be done by including a trend as an 
additional regressor, or by “detrending” the 
data.
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SPURIOUS REGRESSION

“Detrending” the data

• One way to avoid spurious correlation of 
trended variables is to “detrend” variables 
before using them in regressions.

• For example, suppose we regress
xt = 1 + 2 t + t .

• Residuals from this regression are called 
“detrended x” because the time trend has 
been removed from  x.

Should variables be “detrended” 
before use in regression equations?

• Compare the following three regressions.

(1) yt = 1 + 2 xt + 3 t + t.

(2) yt = 1 + 2 dtxt + t,  
where dtxt = detrended xt.

(3) dtyt = 1 + 2 dtxt + t,  
where dtxt = detrended xt, 
and dtyt = detrended yt .

Should variables be “detrended” before 
use in regression equations? (cont’d)

• It can be proved that all 3 regressions yield 
the same estimates of 1 and 2 and the 
same standard errors!

• So including a time trend is equivalent to 
detrending regression variables.

Example:  avoiding spurious 
regression by including a time trend

• enrollmentt = 1 + 2 price of cheeset

+ 3 trendt

P-valuet Stat
Standard 

ErrorCoefficients

0.0004.5231149.0495197.245Intercept

0.1621.45013.69819.860Price of cheese

0.3261.00751.14651.481Trend

R2 in time-series regressions

• R2 and adjusted  R2 values are often very high in 
time series regressions, for two reasons.

(1) Often the dependent variable is less “noisy” than 
in cross section data.  Economy-wide averages or 
totals (typical of time-series data) are often easier 
to explain than individual firms and consumers 
(typical of cross-section data).

(2) The dependent variable is often ____________.

Why trends raise R2 and adjusted R2

• If yt is trended, R2 (and adjusted R2) tend to 
increase with sample size (denoted T).

• To see this, assume yt is trended and the 
variance of the error term is constant.

• Then                                        , a constant.

• But                              grows without bound.
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SPURIOUS REGRESSION

Sample variance (S2
y) of a trended 

variable grows without bound:  example

0
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15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
t

yt

First 5 observations:  S2
y = ____.

First 10 observations: S2
y = ____.

First 15 observations: S2
y = ____.

First 20 observations: S2
y = ____.

Why trends raise R2 (cont’d)

• Now consider the second term of Theil’s adjusted 
R2.

• Clearly the second term must approach zero, so 
the adjusted R2 must approach one.

• Wooldridge proposes that a better, more honest  
R2 be computed from a regression on detrended
variables, but this is rarely done.

Conclusions

• Many time series show clear linear or exponential 
time trends.

• Unrelated series may appear correlated if both 
have trends, causing ___________ regression.

• ___________ regression can be avoided if a time 
trend is included as a regressor.

• This is equivalent to detrending the variables.

• R2 and adjusted  R2 are often very ________ if 
the dependent variable is trended.
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