Introduction to Econometrics (Econ 107)
Drake University, Fall 2007
William M. Boal

Signature:	
Printed name:	

MIDTERM EXAMINATION #1 VERSION B "Introduction and Statistics Review" September 20, 2007

INSTRUCTIONS: This exam is closed-book, closed-notes. You may use a calculator on this exam, but not a graphing calculator or a calculator with alphabetical keys. Point values for each question are noted in brackets. A table of the t-distribution is attached.

I. MULTIPLE CHOICE: Circle the one best answer to each question. Feel free to use margins for scratch work [3 pts each—45 pts total]

(1) Which of the following is *not* necessarily true?

a.
$$\sum (x_i - \overline{x}) = 0.$$

b.
$$\sum x_i = n\overline{x}$$
.

c.
$$\sum \left(\frac{x_i}{y_i}\right) = \frac{\sum x_i}{\sum y_i}.$$

d.
$$\sum (\alpha x_i) = \alpha \sum x_i$$
.

e.
$$\sum_{i=1}^{\infty} (x_i - \overline{x})^2 = (\sum_{i=1}^{\infty} x_i^2) - n \, \overline{x}^2.$$

$$(2) \frac{\partial}{\partial \alpha} \sum_{i=1}^{n} (x_i^2 - \alpha) =$$

a.
$$\sum_{i=1}^{n} (2x_i - \alpha) .$$

b.
$$\sum_{i=1}^{n} (x_i^2 - \alpha) x_i$$
.

c.
$$\sum_{i=1}^{n} 2x_i$$
.

d.
$$\alpha \sum_{i=1}^n x_i$$
.

e.
$$-n$$
.

(3) Suppose we wish to fit the equation $y = \beta_1 + \beta_2 x$ to data by the method of least squares. This method minimizes which function of the data?

a.
$$f(\beta_1, \beta_2) = \sum (y_i^2 - (\beta_1 - \beta_2 x)^2)$$

b.
$$f(\beta_1, \beta_2) = \sum (y_i - \beta_1 - \beta_2 x)^2$$
.

c.
$$f(\beta_1, \beta_2) = \sum (y_i - \beta_1 - \beta_2 x)$$
.

d.
$$f(\beta_1, \beta_2) = \sum |y_i - \beta_1 - \beta_2 x|$$
.

e.
$$f(\beta_1, \beta_2) = \sum_{1} (\beta_1 + \beta_2 x)^2$$
.

The next two questions assume the following. Suppose X is a Bernoulli random variable, with $Prob\{X=1\} = 0.6$ and $Prob\{X=0\} = 0.4$.

- (4) The mean or expected value of X is
- a. zero.
- b. 0.24.
- c. 0.4.
- d. 0.6.
- e. one.

- (5) The variance of X is
- a. zero.
- b. 0.24.
- c. 0.4.
- d. 0.6.
- e. one.
- (6) The correlation of any random variable with itself is necessarily
- a. infinite.
- b. exactly one.
- c. negative one.
- d. zero.
- e. between negative one and one.
- (7) Which of the following distributions does *not* have a symmetric bell-shaped density function?
- a. chi-square distribution.
- b. t distribution.
- c. normal distribution.
- d. all of the above have bell-shaped density functions.
- e. none of the above have bell-shaped density functions.

The next two questions assume the following. Suppose a random sample of size n is drawn from some population. The population has mean μ and variance σ^2 . Consider the sample mean, defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

- (8) The expected value of \overline{X} is
- a. μ.
- b. $\mu / (n-1)$.
- c. μ/n .
- d. μ / n^2 .
- e. zero.
- f. one.

- (9) The variance of \overline{X} is
- a. σ^2 .
- b. $\sigma^2 / (n-1)$.
- c. σ^2 / n .
- d. σ^2/n^2 .
- e. zero.
- f. one.
- (10) An estimator $\hat{\theta}$ of an unknown population parameter θ is said to be unbiased if
- a. $E(\hat{\theta}) = \theta$.
- b. $E(\hat{\theta}) = 0$.
- c. $\lim_{n\to\infty} E(\hat{\theta}) = \theta$.
- d. $\lim_{n\to\infty} \text{Prob}(|\hat{\theta}-\theta|>\delta) = 0$, for all $\delta > 0$.
- e. $\lim_{n\to\infty} MSE(\hat{\theta}) = 0$.
- (11) An estimator $\hat{\theta}$ of an unknown population parameter θ is said to be asymptotically unbiased if
- a. $E(\hat{\theta}) = \theta$.
- b. $E(\hat{\theta}) = 0$.
- c. $\lim_{n\to\infty} E(\hat{\theta}) = \theta$.
- d. $\lim_{n\to\infty} \text{Prob}(|\hat{\theta} \theta| > \delta) = 0$, for all $\delta > 0$.
- e. $\lim_{n\to\infty} E(\hat{\theta}) = 0$.
- (12) Which method(s) for finding an estimator proceeds by setting the sample mean equal to the population mean, the sample variance equal to the population variance, etc.?
- a. method of maximum likelihood.
- b. method of moments.
- c. both of the above.
- d. none of the above.

- (13) A wider confidence interval is obtained by
- a. increasing the confidence level.
- b. decreasing the confidence level.
- c. increasing the sample size.
- d. both (b) and (c).
- e. none of the above.
- (14) The probability that a test will correctly reject the null hypothesis when it is false is called the
- a. test statistic.
- b. standard error.
- c. critical point of the test.
- d. power of the test.
- e. size or significance of the test.

- (15) If the computed p-value for a test statistic is greater than the size of the test, we
- a. can reject the null hypothesis.
- b. cannot reject the null hypothesis.
- c. cannot compute the test statistic.
- d. answer cannot be determined from the information given.

II. PROBLEMS: Please write your answers in the boxes on this question sheet. Show your work and circle your final answers.

(1) [Least-squares calculation: 12 pts] Suppose the following three observations on $\,x_i\,$ and $\,y_i\,$ are given.

Observation (i)	χ_i	y_i
1	3	3
2	4	11
3	2	7

a. Compute $\hat{\beta}_2$, the least-squares estimate of the slope of the line $y = \beta_1 + \beta_2 x$.

b. Compute $\hat{\beta}_1$, the least-squares estimate of the y-intercept of the same line.

c. Compute the three fitted values \hat{y}_i of this least-squares estimated regression line.

- d. Compute the three residuals $\hat{\varepsilon}_i$ of this estimated least-squares regression line.
- 1. Compute the three residuals ε_i of this estimated least-squares regression fine

(2) [Moments: 12 pts] Suppose X_1 and X_2 are random variables with the following moments.

 $E(X_1) = 4$ $E(X_2) = 3$ $Var(X_1) = 4$ $Var(X_2) = 9$

 $Cov(X_1, X_2) = 2.25$

Now let $Y = X_1 + 2X_2$. Compute the following and circle your final answers.

a. Compute E(Y).

b. Compute Var(Y).

c. Compute SD(Y).

d. Compute $Corr(X_1, X_2)$.

(3) [Estimation: 12 pts] Suppose we wish to estimate the mean of a population using the following (peculiar) estimator applied to a random sample of 8 observations.

$$\hat{\mu} = -12 + \frac{1}{5} \sum_{i=1}^{8} x_i$$

Compute the following properties of the estimator under the assumption that the true population mean is $E(X_i) = 15$ and the true population variance is $Var(X_i) = 25$. Circle your final answers.

a.	Compute $E(\hat{\mu})$.
b.	Compute Bias($\hat{\mu}$).
c.	Compute $Var(\hat{\mu})$.
d.	Compute $MSE(\hat{\mu})$.

[end of exam]

(4) [Inference for arbitrary distribution, large sample: 18 pts] Suppose we wish to analyze the distribution of the number of children per family in a population. Let μ denote the unknown true population mean number of children per family. Observations X_i have been collected on 400 families, with the following summary values. Here, \overline{X} is the sample mean.

$$\sum_{i=1}^{400} X_i = 880 \qquad \sum_{i=1}^{400} \left(X_i - \overline{X} \right)^2 = 144$$

a.	[3 pts] Is the population distribution discrete or continuous? Justify your answer.
b.	[3 pts] Compute an unbiased estimate of μ.
c.	[3 pts] Compute the standard error of your estimate of μ.
d.	[3 pts] Compute a 95% asymptotic confidence interval for μ.
e.	 [6 pts] Test the null hypothesis that μ = 2 against the one-sided alternative hypothesis that μ > 2, at 5% significance using an asymptotic test. Give the <i>value</i> of the test statistic the <i>critical point</i> from the appropriate table your conclusion: whether you reject the null hypothesis at 5% significance.
	your conclusion. whether you reject the null hypothesis at 370 significance.