Introduction to Econometrics (Econ 10	7)
Drake University, Spring 2006	
William M. Boal	

Signature:		
Printed name:		

MIDTERM EXAMINATION #1 VERSION B

"Introduction and Statistics Review" February 7, 2006

INSTRUCTIONS: This exam is closed-book, closed-notes. You may use a calculator on this exam, but not a graphing calculator or a calculator with alphabetical keys. Point values for each question are noted in brackets. A table of the t-distribution is attached.

I. MULTIPLE CHOICE: Circle the one best answer to each question. Feel free to use margins for scratch work [3 pts each—42 pts total]

(1) Which of the following is *not* necessarily true?

a.
$$\sum (\alpha x_i) = \alpha \sum x_i$$
.

b.
$$\sum (x_i - \bar{x})^2 = (\sum x_i^2) - n \, \bar{x}^2$$
.

c.
$$\sum (x_i - \bar{x}) = 0.$$

d.
$$\sum_{i=1}^{n} x_i = n\overline{x}$$
.

e.
$$\sum_{i=1}^{n} (x_i / y_i) = (\sum_{i=1}^{n} x_i) / (\sum_{i=1}^{n} y_i)$$

(2) Suppose we wish to fit the equation $y = \beta_1 + \beta_2 x$ to data by the method of least squares. This method minimizes which function of the data?

a.
$$f(\beta_1, \beta_2) = \sum (y_i - \beta_1 - \beta_2 x)$$
.

b.
$$f(\beta_1, \beta_2) = \sum |y_i - \beta_1 - \beta_2 x|$$

c.
$$f(\beta_1, \beta_2) = \sum (\beta_1 + \beta_2 x)^2$$
.

d.
$$f(\beta_1, \beta_2) = \sum (y_i - \beta_1 - \beta_2 x)^2$$
.

e.
$$f(\beta_1, \beta_2) = \sum (y_i^2 - (\beta_1 - \beta_2 x)^2)$$

The next two questions assume the following. Suppose X is a Bernoulli random variable, with $Prob\{X=1\} = 0.8$ and $Prob\{X=0\} = 0.2$.

- (3) The mean or expected value of X is
- a. one.
- b. 0.8.
- c. 0.2.
- d. 0.16.
- e. zero.
- (4) The variance of X is
- a. one.
- b. 0.8.
- c. 0.2.
- d. 0.16.
- e. zero.
- (5) The correlation of any two independent random variables is
- a. negative.
- b. zero.
- c. between negative one and one.
- d. exactly one.
- e. infinite.
- (6) Which of the following distributions has a symmetric bell-shaped density function?
- a. t distribution.
- b. chi-square distribution.
- c. F distribution.
- d. all of the above have bell-shaped density functions.
- e. none of the above have bell-shaped density functions.

The next two questions assume the following. Suppose a random sample of size n is drawn from some population. The population has mean μ and variance σ^2 . Consider the sample mean, defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} .$$

- (7) The variance of \overline{X} is
- a. zero.
- b. σ^2 .
- c. σ^2/n .
- d. σ^2 / n^2 .
- e. $\sigma^2 / (n-1)$.
- (8) The expected value of \overline{X} is
- a. zero.
- b. μ.
- c. μ/n .
- d. μ / n^2 .
- e. $\mu / (n-1)$.
- (9) Let $\hat{\theta}$ be an estimator of an unknown population parameter θ , with the property that the probability of $\hat{\theta}$ being more than any given distance from θ shrinks to zero, as the sample size increases without bound.

The estimator $\hat{\theta}$ is said to be

- a. unbiased
- b. asymptotically unbiased.
- c. consistent.
- d. linear.
- e. efficient.
- (10) If an estimator is unbiased, then its mean square error (MSE)

- a. must be greater than its variance.
- b. must be equal to its variance.
- c. must be less than its variance.
- d. can be greater or less than its variance.
- e. must be identically zero.
- (11) Which method(s) for finding an estimator does *not* require us to know the formula for the underlying density function of the population?
- a. method of maximum likelihood.
- b. method of moments.
- c. both of the above require us to know the formula for the density function.
- d. neither of the above require us to know the formula for the density function.
- (12) A wider confidence interval is obtained by
- a. increasing the confidence level.
- b. decreasing the confidence level.
- c. increasing the sample size.
- d. both (b) and (c).
- e. none of the above.
- (13) The probability that a test will correctly reject the null hypothesis when it is false is called the
- a. critical point of the test.
- b. power of the test.
- c. size or significance of the test.
- d. test statistic.
- e. standard error.
- (14) If the computed p-value for a test statistic is greater than the size of the test, we
- a. can reject the null hypothesis.
- b. cannot reject the null hypothesis.
- c. cannot compute the test statistic.
- d. answer cannot be determined from the information given.

II. PROBLEMS: Please write your answers in the boxes on this question sheet. Show your work and circle your final answers.

(1) [Least-squares calculation: 12 pts] Suppose the following three observations on $\,x_i\,$ and $\,y_i\,$ are given.

Observation (i)	χ_i	Уi
1	4	3
2	8	5
3	6	7

a. Compute $\hat{\beta}_2$, the least-squares estimate of the slope of the line $y = \beta_1 + \beta_2 x$.

b. Compute $\hat{\beta}_1$, the least-squares estimate of the y-intercept of the same line.

c. Compute the three fitted values \hat{y}_i of this least-squares estimated regression line.

d. Compute the three residuals $\hat{\varepsilon}_i$ of this estimated least-squares regression line.

. Compute the three residuals z_i of this estimated least-squares regression fine

(2) [Moments: 12 pts] Suppose X_1 and X_2 are random variables with the following moments.

$$E(X_1) = 6$$

 $E(X_2) = 5$

$$Var(X_1) = 9$$
$$Var(X_2) = 4$$

$$Cov(X_1, X_2) = 0.75$$

Now let $Y = 2X_1 + 3X_2$. Compute the following and circle your final answers.

a. Compute E(Y).

b. Compute Var(Y).

c. Compute SD(Y).

d. Compute $Corr(X_1, X_2)$.

(3) [Estimation: 12 pts] Suppose we wish to estimate the mean of a population using the following (peculiar) estimator applied to a random sample of 10 observations.

$$\hat{\mu} = -2 + \frac{1}{6} \sum_{i=1}^{10} x_i$$

Compute the following properties of the estimator under the assumption that the true population mean is $E(X_i) = 6$ and the true population variance is $Var(X_i) = 18$. Circle your final answers.

a.	Compute	$E(\hat{\mu})$.
b.	Compute	$\operatorname{Bias}(\hat{\mu}).$
c.	Compute	$Var(\hat{\mu})$.
.1	C	MCE/ ^ \
d.	Compute	$\mathrm{MSE}(\hat{\mu}).$

(4) [Inference for arbitrary distribution, large sample: 18 pts] Suppose we wish to analyze the distribution of the number of children per family in a population. Let μ denote the unknown true population mean number of children per family. Observations X_i have been collected on 600 families, with the following summary values. Here, \overline{X} is the sample mean.

$$\sum_{i=1}^{600} X_i = 1260 \qquad \qquad \sum_{i=1}^{600} \left(X_i - \overline{X} \right)^2 = 144$$

a.	[3 pts] Is the population distribution discrete or continuous? Justify your answer.
b.	[3 pts] Compute an unbiased estimate of μ.

- c. [3 pts] Compute a 95% asymptotic confidence interval for μ.
- d. [9 pts] Test the null hypothesis that $\mu = 2$ against the one-sided alternative hypothesis that $\mu > 2$, at 5% significance using an asymptotic test. Give
 - the *value* of the test statistic
 - the *critical point* from the appropriate table
 - your conclusion: whether you reject the null hypothesis at 5% significance.

III. CRITICAL THINKING [4 pts] Suppose a researcher proposes to apply the following estimator for the population mean to a sample of n observations.

$$\hat{\mu} = \frac{1}{n-5} \sum_{i=1}^{n} x_i$$

What is wrong with this estimator? Is it biased? Is it asymptotically biased? Is it inconsistent? Justify your answer.

[end of exam]