BOAL'S ECON 002

SLIDESHOW HANDOUTS
 SPRING 2024

TENTATIVE COURSE SYLLABUS

\author{

1. Resources | 2. Requirements \mid 3. Schedule
}

1. Resources

Description from Course Catalog: Economic analysis of individual markets. Production, comparative advantage, supply and demand, elasticities, price and quantity controls, taxes and subsidies, international trade, consumer choice, business cost curves and profit maximization, consumer and producer surplus, economic efficiency, monopoly, oligopoly, externalities, and public goods. Students are expected to understand graphs, functions, and algebra at the level of tenth-grade high school mathematics.

CBPA Promises: "Our graduates will be equipped with the technical skills, business acumen, empathy, and experience necessary to innovate and lead in a globally complex, diverse, and dynamic world. They will be (1) Proficient in their fields, (2) Data-driven, strategic, and innovative problem solvers, (3) Effective communicators, (4) Socially and ethically responsible leaders, and (5) Global and multicultural citizens." This course addresses all five Promises, but especially Promises (2), (4), and (5).

Class meetings: CRN 4873 meets Mondays and Wednesdays from 9:30 to 10:45 in Aliber 010.

How to contact instructor:

- Electronic mail: william.boal@drake.edu
- Office: 319 Aliber Hall
- Telephone and voice mail: 271-3129

The quickest way to reach me is by email, which I check continually throughout the day. Please do not send messages by Blackboard, which I check infrequently.

Office hours: Office hours are a time when you can get help with homework, ask questions about course material, and discuss your grade or anything related to this course or economics in general. Bring your slideshow handouts. My office hours this semester are Monday, Tuesday, and Wednesday, 2 to 4 PM on Zoom. Please make an appointment at least 3 hours in advance on Starfish. Zoom links are posted on Starfish and Blackboard. If these hours are inconvenient due to schedule conflicts, please send email to schedule a special appointment and suggest some alternate times.

Resources to purchase:

- Required: John B. Taylor and Akila Weerapana. Principles of Microeconomics, Version $\mathbf{1 0 . 0}$. Flat World Textbooks (flatworld.com). 2021. ISBN 978-1-4533-4133-9. Buy it from either the University Bookstore or the publisher's website, https://students.flatworldknowledge.com/course/2606775. Do not buy a used copy because it will not allow access to the FlatWorld Homework Assignments (linked from Blackboard). If you lose your access code or have difficulty accessing the FlatWorld Homework Assignments from Blackboard, please go to https://catalog.flatworldknowledge.com/customer_support for help.
- Required: Boal's Econ 002 Slideshow Handouts, a packet of photocopies. Available for purchase at TBA. Please bring it to class every day.
- Required: A simple calculator (capable of addition, subtraction, multiplication and division) for exams. Graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted during exams. If you do not bring a simple calculator, you must take the exam without a calculator.
- Recommended: A three-ring binder and a highlighter for your course packet.

Online resources:

- Drake email. Course announcements will occasionally be sent to this account, so check it daily. Announcements often get diverted to "Junk" or "Clutter" folders, so check them as well as your inbox.
- Blackboard. Required FlatWorld homework, slideshow quizzes, and problem sets are posted here. If you have difficulty accessing Blackboard, please call the ITS HelpDesk at 271-3001.
- Course materials webpage (wmboal.com/pmicro). Old exams are posted here.

Tutoring resources:

- Your instructor should be your first resource for questions and help.
- The Economics Tutoring Lab provides free tutoring by advanced economics students. The Lab opens about the third week of the semester. Hours and location are at www.drake.edu/economics/resources/. Appointments can be made at www.drake.edu/access-success/tutoring/ . To help the tutor help you, read the textbook first, and bring your slideshow handouts to the Lab.
- The Math Tutoring Lab (library.drake.edu/math-tutoring/) can help with purely mathematical questions.

2. Requirements

Course grade: Each exam and assignment is graded on a scale from zero to 100. Your overall course score is calculated as a weighted average, using the following formula:

$$
\begin{aligned}
& \text { SCORE }=70 \% \times \text { average Exam score }+10 \% \times \text { average FlatWorld Homework score } \\
& +10 \% \times \text { average Slideshow Quiz score }+10 \% \times \text { average Problem Set score }- \text { Absences }
\end{aligned}
$$

A SCORE of 97 or above is required for an A+, 93 for an A, 90 for an A-, 87 for a $\mathrm{B}+, 83$ for a $\mathrm{B}, 80$ for a B-, 77 for a C+, 73 for a C, 70 for a C-, 67 for a $\mathrm{D}+, 63$ for a D, and 60 for a D -. SCORES will not be rounded before awarding letter grades. Extra credit work is not available. Exams and assignments may not be redone for a better grade. Just resolve to do better on the next one!

Exams: There will be four in-class exams and a final examination. All exams are closed-book, closed-notes. Simple calculators are permitted, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are not permitted. If you do not bring a simple calculator, you must take the exam without a calculator. The nature of the course material is cumulative, so exams may contain material from previous sections of the course. The final exam counts double and is required-students who do not take the final will not pass the course.

FlatWorld Homeworks: These online assignments cover the textbook readings and are accessed from Blackboard. Note that they are due the day before the topic is discussed in class. If you have trouble accessing the FlatWorld homework, please contact https://catalog.flatworldknowledge.com/customer_support .

Slideshow Quizzes: These online multiple-choice quizzes cover the slideshows presented in class and are accessed from Blackboard. They consist of 5-10 multiple-choice questions and are due the day after the topic is covered in class. You can take each slideshow quiz up to three times until the due date, but the questions will change.
Blackboard records your average score, so don't retake a quiz unless you are confident that you can improve.
Problem Sets: These are posted on Blackboard in PDF format. Print them, complete them in pen or pencil (colored pencil welcome!) and submit them as hard-copy. They are due at the next class after the topic is covered in class.

Policy on late work: Early submissions are welcome but late submissions are not accepted. If your computer fails, please use a computer in Cowles Library or some other device to complete assignments. Computer problems are not an acceptable excuse for late assignments. Students expecting to gone on an athletic trip when an assignment is due should submit that assignment before leaving.

Policy on absences: Attendance is taken at every class. Students may miss up to three classes for any reason without penalty (except when exams are given). Thereafter, one point will be deducted from the course SCORE for each absence. Athletic team trips, documented by an official schedule sheet, will not be counted as absences.

Policy on rescheduling exams: If your own medical emergency, or a serious illness or death in your family requires you to miss an exam, you may be given a makeup exam. However, you must inform me of the emergency before the exam by email, and soon afterward submit a written explanation (including date of absence and documentation if possible).

Certain other circumstances are acceptable reasons for rescheduling an exam. These include religious observance, medical appointment, interview trip, and athletic team trip. Because these circumstances can be predicted, you must send me an email request to reschedule, with an explanation, at least one week before the date of the exam.
Unacceptable reasons include family vacation, ride leaving early for break, early plane flight, overslept, etc.
Policy on grade corrections: Accurate grading is important. If you find an error, please let me know as soon as possible. The deadline for regrading homework, problem sets, or midterm exams is the day of the final exam.

Policy on computers and phones in class: Computers, tablets, and phones must be turned off during class unless I specifically announce otherwise.

Disability accommodation: Any student who has a disability that substantially limits their ability to perform in this course under normal circumstances should contact Student Disability Services, 271-1835, to request accommodation. Any request must be received from Student Disability Services at least one week before the necessary accommodation. All relevant information will be kept strictly confidential. If your accommodation requires extra time for exams, you should contact me at least a week before each exam to schedule an alternative time and place.

How to succeed in this course:

- Attend every class.
- Work assignments sets carefully. They are designed to help you prepare for exams, which count for most of the course grade. If you simply copy other students' answers, you will not be prepared for exams.
- Further prepare for exams by working old exams, posted at wmboal.com/pmicro. Don't look at the answer key until after you have worked each problem, or you will become overconfident.
- If you are doing all this but not doing as well as you would like, please ask for help. Talk to me after class, send email to william.boal@drake.edu, or visit my office hours. I am eager to help!

Policy on academic integrity: The CBPA's Academic Integrity Policy (www.drake.edu/cbpa/about/cbpapolicies) applies to this course. The consequences of violating this policy vary, depending on my evaluation of the severity of the dishonesty. A violation (such as cheating, plagiarism, or fabrication) can result in a grade of zero on the test or assignment, an F for the course grade, or even expulsion from the University. Please read the policy and ask for clarification if necessary.

3. Schedule

If bad weather or an epidemic closes campus, most likely we will have class online using Blackboard Collaborate.
FlatWorld Homeworks on readings are due the day before the topic is discussed in class. Slideshow Quizzes are due the day after the topic is completed in class. Problem Sets are to be submitted at the next class period after the topic is completed in class.

Part 1: Competitive Supply and Demand

Big ideas: People and countries can benefit from trade, even if they are capable of producing every product they need. When they trade with money in competitive markets, we can predict the outcome if we know their demand and supply curves.

Famous quote: "That [the principle of comparative advantage] is not trivial is attested by the thousands of important intelligent men who have never been able to grasp the doctrine for themselves or to believe it after it was explained to them."
--Paul Samuelson, "The Way of an Economist" (1969)
Another famous quote: "We might as reasonably dispute whether it is the upper or the under blade of a pair of scissors that cuts a piece of paper, as whether the [price] is governed by utility [to demanders] or cost of production [to suppliers]." [The price is governed by both!]
--Alfred Marshall, Principles of Economics (1898)
A. Introduction and math review [Jan 29, Jan 31]
\square Read this entire syllabus and highlight important items.
\square Read Taylor \& Weerapana textbook chapter 2 and do FlatWorld homework on Blackboard by 11:59 PM on Feb 2. The rocket ship icon is the link to the FlatWorld homework.
\square Bring the following slideshow handouts to class: Welcome to "Principles of Microeconomics." The economic approach to human behavior. Economics as a science. Math review: basic concepts and skills. Math review: averages and rates of change. Math review: percent changes.
\square If you feel rusty at basic algebra, view the helpful videos at www.khanacademy.org/ .
\square Do Slideshow Quiz on Blackboard by 11:59 PM Feb 1. (Do the quiz after the slideshows are covered in class.)
$\square \quad$ Submit Problem Set in class by Feb 5.
B. Production and trade [Feb 5, Feb 7, Feb 12]
\square Read textbook by Taylor \& Weerapana, chapter 1 and do FlatWorld homework on Blackboard by Feb 4.
\square Bring the following slideshow handouts to class: Production functions. Production possibilities. Comparative advantage. Gains from trade. Institutions that support trade.
\square Do Slideshow Quiz on Blackboard by Feb 13.
\square Submit Problem Set in class by Feb 14.
C. Supply and demand [Feb 14, Feb 19]
\square Read textbook by Taylor \& Weerapana, chapter 3 and do FlatWorld homework on Blackboard by Feb 13.
\square Bring the following slideshow handouts to class: Demand. Supply. Equilibrium. Shifts in demand and supply curves. Willingness-to-pay and consumer surplus. Marginal cost and producer surplus.
\square Do Slideshow Quiz on Blackboard by Feb 20.
\square No problem set. Instead, study for exam.
First exam [Feb 21]

- Prepare by reviewing slideshow handouts and recent problem sets, and by working old exams posted online (wmboal.com/pmicro).
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 2: Applications of Supply and Demand
Big ideas: International trade and government intervention in markets create winners and losers in predictable ways. How much they win or lose depends on the shapes of demand and supply curves.

Famous quote: "Every individual ... neither intends to promote the public interest, nor knows how much he is promoting it ...He intends only his own gain, and he is in this ... led by an invisible hand to promote an end which was no part of his intention. Nor is it always the worse for society that it was no part of it. By pursuing his own interest he frequently promotes that of society more effectually than when he really intends to promote it."
--Adam Smith, The Wealth of Nations (1776)
A. Elasticities [Feb 26, Feb 28]
\square Read textbook by Taylor \& Weerapana, chapter 4 sections 4.2, 4.3, and 4.4 and do FlatWorld homework on Blackboard by Feb 25.
$\square \quad$ Bring the following slideshow handouts to class: Measuring sensitivity. The price elasticity of demand. Calculating elasticities. Other demand elasticities. The price elasticity of supply. Using price elasticities. Using the income elasticity of demand.
\square Do Slideshow Quiz on Blackboard by Feb 29.
\square Submit Problem Set in class by Mar 4.
B. International trade and arbitrage [Mar 4, Mar 6]
\square No textbook reading and no FlatWorld homework on Blackboard.
\square Bring the following slideshow handouts to class: Effects of international trade. Economic efficiency and welfare analysis. Welfare analysis of international trade. Arbitrage.
$\square \quad$ Do Slideshow Quiz on Blackboard by Mar 7.
\square Submit Problem Set in class by Mar 18.
\square Enjoy Spring Break, Mar 11-15!
C. Market controls and taxes [Mar 18]
\square Read textbook by Taylor \& Weerapana, chapter 4 section 4.1 , and chapter 7 sections 7.3, 7.4 and 7.5 , and do FlatWorld homework on Blackboard by Mar 17.
\square Bring the following slideshow handouts to class: Price controls. Quotas. Welfare analysis of price controls and quotas. Taxes. Subsidies. Welfare analysis of taxes and subsidies.
\square Do Slideshow Quiz on Blackboard by Mar 19.
\square No problem set. Instead, study for exam.
Second exam [Mar 20]

- Prepare by reviewing slideshow handouts and recent problem sets, and by working old exams posted online (wmboal.com/pmicro).
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 3: Choices Underlying Supply and Demand

Big ideas: Buyers and sellers must decide whether to participate in markets and how much to buy or sell. Economic theory assumes buyers and sellers make these decisions by doing the best they can with what they have.

Famous quote: "It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their own interest."
--Adam Smith, The Wealth of Nations (1776)
A. Consumer choices and demand [Mar 25, Mar 27]
\square Read textbook by Taylor \& Weerapana, chapter 5 section 5.7 (appendix) only. No FlatWorld homework on Blackboard.
\square Bring the following slideshow handouts to class: Two kinds of demand curves. The consumer's budget constraint. Indifference curves. Consumer choice. Consumer demand. Rational choice.
\square Do Slideshow Quiz on Blackboard by Mar 28.
$\square \quad$ Submit Problem Set in class by Apr 1.
B. Business output decisions and supply [Apr 1, Apr 3]
\square Read textbook by Taylor \& Weerapana, chapters 6 and 8 and do FlatWorld homework on Blackboard by Mar 31.
\square Bring the following slideshow handouts to class: Business firms. Profit maximization. Profit maximization when price is taken as given. The firm's costs in the short run. Profit maximization in the short run.
\square Do Slideshow Quiz on Blackboard by Apr 4.
\square Submit Problem Set in class by April 8.
C. Business entry and exit [Apr 8]
\square Read textbook by Taylor \& Weerapana, chapter 9, and chapter 16 section 16.8 (appendix) only, and do FlatWorld homework on Blackboard by Apr 7.
\square Bring the following slideshow handouts to class: Discounting and the value of the firm. Long-run competitive equilibrium. Horizontal long-run supply curves. Upward-sloping long-run supply curves.
$\square \quad$ Do Slideshow Quiz on Blackboard by Apr 9.
\square No problem set. Instead, study for exam.
Third exam [Apr 10]

- Prepare by reviewing slideshow handouts and recent problem sets, and by working old exams posted online (wmboal.com/pmicro).
- Bring a straightedge to this exam-a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 4: Perfect and Imperfect Competition

Big ideas: Marginal-cost pricing makes competitive markets efficient. But sellers, if they are few in number, try to limit competition and push price above marginal cost. This helps sellers, of course, but hurts society as a whole.

Famous quote: "People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices."
--Adam Smith, The Wealth of Nations (1776)
A. Virtues of perfect competition [Apr 15, Apr 17]
\square Read textbook by Taylor \& Weerapana, chapter 7 sections 7.1 and 7.2 only, and do FlatWorld homework on Blackboard by April 14.
\square Bring the following slideshow handouts to class: Perfect competition. Efficiency of perfectly competitive markets. Economy-wide efficiency.
\square Do Slideshow Quiz on Blackboard by Apr 18.
\square Submit Problem Set in class by Apr 22.
B. Monopoly [Apr 22, Apr 24]
\square Read textbook by Taylor \& Weerapana, chapter 10, and do FlatWorld homework on Blackboard by Apr 21.
\square Bring the following slideshow handouts to class: Monopoly and barriers to entry. Monopoly pricing. Welfare analysis of monopoly. Monopoly price discrimination.
\square Do Slideshow Quiz on Blackboard by Apr 25.
$\square \quad$ Submit Problem Set in class by Apr 29.
C. Imperfect competition [Apr 29]
\square Read textbook by Taylor \& Weerapana, chapter 11 sections 11.1 and 11.2 only, and do FlatWorld homework on Blackboard by Apr 28.
\square Bring the following slideshow handouts to class: Cartels and antitrust policy. Oligopoly. Monopolistic competition.
\square Do Slideshow Quiz on Blackboard by Apr 30.
\square No problem set. Instead, study for exam.
Fourth exam [May 1]

- Prepare by reviewing slideshow handouts and recent problem sets, and by working old exams posted online (wmboal.com/pmicro).
- Bring a straightedge to this exam-a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 5: Public Goods and Externalities

Big ideas: Markets fail to work efficiently when third parties are affected—pollution is a classic example-or when many people consume the same item simultaneously.

Famous quote: "In general industrialists are interested, not in the social, but only in the private, net product of their operations."
-- Arthur C. Pigou, The Economics of Welfare (1920)
A. Public goods [May 6]
\square Read textbook by Taylor \& Weerapana, chapter 15 section 15.1 only, and do FlatWorld homework on Blackboard by May 5.
\square Bring the following slideshow handouts to class: Nonrival goods. Nonexcludable goods and common resources. Pure public goods.
$\square \quad$ Do Slideshow Quiz on Blackboard by May 7.
\square No problem set. Instead, study for the final exam.
B. Externalities [May 8]
\square Read textbook by Taylor \& Weerapana, chapter 15 sections 15.2 and 15.3 only, and do FlatWorld homework on Blackboard by May 9.
\square Bring the following slideshow handouts to class: External costs and benefits. Regulating products that cause pollution. Promoting products that provide external benefits. Regulating pollution directly.
\square Do Slideshow Quiz on Blackboard by May 5.
\square No problem set. Instead, study for final exam.

Final Exam

All final exams are scheduled by the Office of the Registrar. The final exam for this course will be given in the regular classroom on TBA. The final exam is comprehensive and includes questions from all parts of the course.

- Prepare by reviewing the exams you have taken already and by working old final exams posted online (wmboal.com/pmicro).
- Bring a straightedge to this exam-a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.
[end of syllabus]

PART 1

Competitive Supply and Demand

Big ideas: People and countries can benefit from trade, even if they are capable of producing every product they need. When they trade with money in competitive markets, we can predict the outcome if we know their demand and supply curves.

Famous quote: "That [the principle of comparative advantage] is not trivial is attested by the thousands of important intelligent men who have never been able to grasp the doctrine for themselves or to believe it after it was explained to them." --Paul Samuelson, "The Way of an Economist" (1969)

Another famous quote: "We might as reasonably dispute whether it is the upper or the under blade of a pair of scissors that cuts a piece of paper, as whether the [price] is governed by utility [to demanders] or cost of production [to suppliers]." [The price is governed by both!]
--Alfred Marshall, Principles of Economics (1898)

Page 1

WELCOME TO
 "PRINCIPLES OF MICROECONOMICS"

- What kinds of questions are investigated in this course?

Why are tomatoes usually more expensive in winter than in summer?

SOURCE: www.bls.gov, APU0000712311, U.S. city average, Tomatoes, field grown, per lb. (453.6 gm)

Why are there so few lines for most consumer goods?

- In old Soviet Union, many people stood on line for hours every day.
- In U.S., there were long lines for gasoline during the energy crisis of the 1970s.
- But normally in U.S., lines for consumer goods are short or non-existent.

Why is a big harvest bad news for farmers?

WELCOME TO PRINCIPLES OF MICROECONOMICS

Page 2

Why do you sometimes have to pay "key money" to get an apartment in NYC?

- To get a 5-bedroom luxury apartment, screenwriter and director Nora Efron had to pay \$ \qquad in "key money" to the previous tenant.
- But rent was only $\$ 1500$ per month.
- Key money is never required in most cities. Why in New York City?

Why do businesses sometimes keep operating when they are losing money?

- Are the business

In the news
the motury foot. 3 anan nep owners incompetent?

Why are some resources overexploited but not others?

- The world is running out of tuna and other species of ocean fish.
- But not chickens or pigs.

Why do some companies welcome restrictions on how much they can sell?

- Import restrictions were placed on Japanese car companies in the early 1980s.
- The companies' profits rose as a result. Why?

Why do some companies give discounts to students or senior citizens but others do not?

[^0]THE ECONOMIC APPROACH TO HUMAN BEHAVIOR

Page 1

Rational behavior does not mean people are all alike

- People do the best they can, based on their own preferences and information, under the circumstances they face.
- People have different preferences, different information, and most importantly, different
\qquad -

Rational behavior

- Economists usually assume that people behave "rationally." This means:
- People do the \qquad
\qquad $-$

Behavior is affected by preferences and information

- Some people like vanilla. Other people like chocolate. Their \qquad are different from each other.
- 70 years ago, many more people smoked cigarettes. Their \qquad was different from people today.

Most importantly, behavior is affected by circumstances

- "Circumstances" means resources and tradeoffs.
- Resources include
- \qquad
\cdot
- But resources only go so far.

Scarcity leads to tradeoffs

- If you do not have enough money to buy everything, you face a problem of
\qquad -.
- If you do not have enough time to do everything, you face a problem of
\qquad -.
- Choices must be made.

THE ECONOMIC APPROACH TO HUMAN BEHAVIOR

Page 2

Tradeoffs are measured by opportunity cost

- If your income is scarce (limited) then buying one thing means \qquad buying another.
- If your time is scarce (limited) then doing one thing means \qquad doing another.
- Opportunity cost $=$ next best alternative that must be foregone when a choice is made.

Opportunity cost examples

- Suppose you have time to study or work out at the gym. Then the \qquad of studying is that you miss a workout.
- Suppose the local government has enough money to build a playground or fix a street. Then the \qquad of
fixing the street is not having the playground.

Choosing whether to do something

- Rational behavior requires comparing the benefits and opportunity costs of any action.
- People choose to buy a car, or take a job, or go on a vacation if its total benefit
\qquad its total cost (including opportunity cost).

Choosing how much to do something

- Rational behavior requires comparing the opportunity cost of the \qquad unit (the "marginal cost") with the benefit of the
\qquad unit (the "marginal benefit").
- People buy ice cream, go to the movies, play video games until the marginal cost of the last unit \qquad the marginal benefit of the last unit.

Example:

whether to buy a car or not?

Example: marginal cost of ice cream		
Scoops	Total cost	Marginal cost per scoop
No ice cream	$\$ 0.00$	
One scoop	$\$ 4.00$	
Two scoops	$\$ 6.00$	
Three scoops	$\$ 7.50$	

THE ECONOMIC APPROACH TO HUMAN BEHAVIOR

Page 3

Example: marginal benefit of ice cream		
Scoops	Total benefit (willing to pay)	Marginal benefit per scoop
No ice cream	\$0.00	
One scoop	\$6.00	
Two scoops	\$9.00	
Three scoops	\$10.00	

Example: how much ice cream?

Scoops	MC	MB
None		
	$\mathbf{\$ 4 . 0 0}$	$\mathbf{\$ 6 . 0 0}$
One		
	$\mathbf{\$ 2 . 0 0}$	$\mathbf{\$ 3 . 0 0}$
Two		
	$\mathbf{\$ 1 . 5 0}$	$\mathbf{\$ 1 . 0 0}$
Three		

Incentives

- If costs or benefits change, then people often make new choices.
- If the ice cream shop raises prices, you might choose only 1 scoop instead of 2 .
- If a job pays more, you might be more likely to take it.
- Incentives $=$ changes in costs and benefits that influence \qquad —.

Interaction

- One person's choice can affect other people's incentives.
- If Apple adds more features to its iPhone, that can create an incentive for Samsung to add features to its phone.
- If McDonalds cuts the price of its burger, that can create an incentive for Burger King to cut its price.

Equilibrium

- Where will it all end?
- Equilibrium = situation where no one has any incentive to change further.
- If neither McDonalds nor Burger King want to change their prices, then they are in

Conclusions

- Economists assume people are \qquad : they do the best they can with what they have.
- They do things up to the point where cost begins to exceed
\qquad benefit.
- One person's choices can change other people's incentives.
- \qquad is reached when no one has any incentive to change further.

ECONOMICS AS A SCIENCE

- How is economics similar to natural science?
- What is the difference between microand macro-economics?

What is a positive statement?

- Positive statement $=$ statement of fact, of how the world works.
- Often contains words like
- Can be true or false, depending on logic and evidence.

Examples of positive statements

Economics

- "Prices \qquad lower in competitive markets than in monopolistic markets."
- "Free international trade help producers in some industries and hurt producers in other industries."

Other sciences

- "Without changes in policy, global temperatures \qquad rise about 2 degrees."
- "If people are not vaccinated, a flu pandemic \qquad cost many lives.

Examples of normative statements

Economics

- "The government _ promote competition and break up monopolies."
- "All countries to encourage free international trade."

Other sciences

- "Energy taxes and incentives \qquad be changed to slow global warming."
- "The government \qquad to distribute flu vaccines for free."

ECONOMICS AS A SCIENCE

Contrast

- Positive statement: "Taxes tend to slow economic growth and equalize income."
- Normative statement: "Taxes should be
\qquad ."
- Whether you say "raised" or "lowered" depends partly on your \qquad $=$ logical descriptions $=$ information that

Example: A model of

 expenditures for housing- "People spend 25% of their income on housing."

Income	Housing Exp.
$\$ 20,000$	$\$$
$\$ 60,000$	$\$$
$\$ 100,000$	$\$$

$=$ \qquad $\times I$

Models and evidence

- Economic science studies the economy two ways:
- Develops \qquad that match the real world approximately.
- Gathers \qquad shows how closely models fit the facts.
- Good models fit the available evidence well, and can help predict the future.

Economic science versus economic policy

- Economic science consists of \qquad statements.
- Economic policy formulation consists of
\qquad statements, but is rooted in economic science.

Branches of economics: microeconomics

- Studies how prices and quantities of particular goods and services are determined in \qquad .
- Dates from Adam Smith (1776).
- Many key ideas developed by late 19th century.

ECONOMICS AS A SCIENCE

Page 3

Branches of economics: macroeconomics

- Studies how the \qquad price level and \qquad output of goods and services are determined in an entire country or the world as a whole.
- Dates from J.M. Keynes (1936).
- Recently has been growing closer to microeconomics, emphasizing rational behavior.

Conclusions

- In economics and other fields, one must distinguish between positive ("is") and normative ("ought") statements.
- Economic science (\qquad economics) develops models and gathers evidence.
- \qquad economics studies particular markets while \qquad economics studies the economy as a whole.

MATH REVIEW: BASIC CONCEPTS AND SKILLS
Page 1

No scary math requirements!

- All you need to know you probably learned by tenth grade.

Priority order of

 mathematical operation(1) Anything in Parentheses.
(2) Exponents.
(3) Multiplication (x, dot, * or nothing) and Division (\div or $/$).
(4) Addition and Subtraction.
(5) Left to right.

Priority order: examples

$$
\begin{aligned}
& 1+2 * 3= \\
& 2 \times 3^{2}= \\
& 7-3+2=
\end{aligned}
$$

Rounding

- How to round a number to n significant

Rounding: examples

- Round 3.1415927 to four significant digits.
- Answer: \qquad
- Round $5 / 11=0.454545454545 \ldots$ to 2 significant digits.
- Answer: \qquad

MATH REVIEW: BASIC CONCEPTS AND SKILLS
Page 2

Caution about rounding

- Often an answer requires a sequence of calculations.
- Rounding errors can grow with each step, so avoid rounding intermediate answers!
- Instead, \qquad intermediate answers in your calculator's memory.
- Round only \qquad the last calculation.

Caution about rounding: example (cont'd)

- Correct answer: $\frac{100}{\frac{1}{3}-\frac{1}{4}}=$ \qquad .
- Moral: don't round intermediate calculations!
- Round only after last calculation!

Caution about rounding: example (cont'd)

- Correct answer: $\frac{100}{\frac{1}{3}-\frac{1}{4}}=$ \qquad .
- Moral: don't round intermediate calculations!
- Round only after last calculation!

Caution about rounding:

example
Suppose we must evaluate $\frac{100}{\frac{1}{3}-\frac{1}{4}}$.

- Nearest tenth: $\frac{100}{\frac{1}{3}-\frac{1}{4}} \approx \frac{100}{0.3-0.3}=$
- Nearest hundredth: $\frac{100}{\frac{1}{3}-\frac{1}{4}} \approx \frac{100}{0.33-0.25}=$
- Nearest thousandth: $\frac{100}{\frac{1}{3}-\frac{1}{4}} \approx \frac{100}{0.333-.250}=$

Positive and negative relationships: examples

- Line A shows a

between X and Y :
" Y is decreasing in X."
- Curve B shows a
relation
between X and Y :
"Y is increasing in X ."

MATH REVIEW: BASIC CONCEPTS AND SKILLS
Page 3

Slopes and intercepts from graphs of lines

- Intercepts shown by intersection with axes.
- Slopes calculated as rise divided by run ($\Delta \mathrm{Y} / \Delta \mathrm{X}$) over any interval.
- Downward-sloping line has \qquad slope.
- Upward-sloping line has \qquad slope.
- Size (absolute value) of slope shows steepness.

Slopes and intercepts from equations of lines

- Slope-intercept form for a line: $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$
- Slope = \qquad $\xrightarrow[\mathrm{X}]{\text { C- }}$
\qquad

- Y -intercept $=$

Slopes and intercepts from graphs of lines: example
X -intercept $=$ \qquad

Slopes and intercepts from

 equations of lines: examples- $\mathrm{Y}=3+2 \mathrm{X}$
- slope = \qquad Y -int $=$

- $\mathrm{Q}=5-3 \mathrm{X}$
- slope $=$ \qquad Q-int = \qquad $\xrightarrow{\text { S }}$
- $\mathrm{P}=10-2 \mathrm{Q}$
- slope $=$ \qquad P-int $=$ \qquad

-

Slopes of curves

- Suppose line relating Y to X has slope $\Delta \mathrm{Y} / \Delta \mathrm{X}=2$.
- Then if X increases by one unit $(\Delta X=1)$, Y \qquad units.
- If X increases by five units $(\Delta X=5)$, Y \qquad units.
- If X decreases by five units $(\Delta X=-5)$, Y \qquad units.

Practical meaning of slope

- At any point on the curve, slope $=$ slope of tangent line.
- Curves can have changing slope.
- Slope can either increase or decrease.

MATH REVIEW: BASIC CONCEPTS AND SKILLS
Page 4

Conclusions

- Math needed:
- simple algebra and rounding.
- positive and negative relationships.
- slopes and intercepts.
- increasing and decreasing \qquad .
- areas of rectangles, triangles, and
\qquad _.

MATH REVIEW: AVERAGES AND RATES OF CHANGE

MATH REVIEW: AVERAGES AND RATES OF CHANGE

- What is the difference between an average value and a marginal value?

Deciding how much

- Many economic decisions take the form, "How much do I want?"
- To analyze these decisions, it is useful to calculate averages and marginal values.
- Average values are familiar to most people.
- But \qquad values are usually more important for decision-making.

Average value: definition

- Average value
$=$ total value $/$ number of units.
- Example: If you pay $\$ 3$ for a two-liter bottle of pop, the average cost per liter = \$ \qquad .

Example: pancakes at the cafe

Pancakes	Total cost	Average cost per pancake
No pancakes	$\$ 0.00$	
1 pancake	$\$ 5.00$	
2 pancakes	$\$ 8.00$	
3 pancakes	$\$ 9.00$	

Example: pancakes at the cafe

MATH REVIEW: AVERAGES AND RATES OF CHANGE

Page 2

Example: ordering pancakes

- Suppose you are deciding whether to order two pancakes or three pancakes.
- If you chose three pancakes, the average cost per pancake = \$ \qquad .
- But the marginal cost of the third pancake = \$ \qquad .
- How much are you really paying for the third pancake? \qquad -.

Marginal cost for other changes in units

- We can still compute marginal values if the change in the number of units is greater (or less) than one.
- Marginal value = rate of change
$=$ change in value $/$ change in number of units
$=\Delta$ value / Δ quantity.

Example: cans of sodapop

Sodapop	Total cost	Average cost per can	Marginal cost per can
No cans	$\$ 0.00$	-	
6 can pack	$\$ 6.00$		
12 can pack	$\$ 9.00$		
24 can pack	$\$ 12.00$		

Conclusions

- Average value
= total value / number of units.
- Marginal value = rate of change $=$ \qquad in value / \qquad in
number of units
$=\Delta$ value $/ \Delta$ quantity .
- The marginal cost of something is the additional amount you pay for the last unit.

MATH REVIEW: PERCENT CHANGES
Page 1

MATH REVIEW: PERCENT CHANGES

- Percent changes are widely used in economics.
- What key concepts for percent changes are important?

Percent change: example

- Median value of homes in Des Moines is \$127 thousand.
- Median value in Chicago is $\$ 247$ thousand.
- Percent change is

$$
247-127
$$

CRCE: 2019 median housing value, www.census.gov, accessed July 2020.

Percent change

- Suppose X takes two different values: X_{1} and X_{2}.
- Change in $X=$ difference in $X=\Delta X$ $=X_{1}-X_{2}$.
- Percent change (or percent difference)
$=\Delta \mathrm{X} /$ base .

Percent change: example

 (cont'd)- If use Des Moines as base, percent change = $\frac{247-1}{127}=$ \qquad -.
- If use Chicago as base, percent change $=$ $\frac{247-127}{247}=$ \qquad -.
- Problem: which is right?

Solution: midpoint formula

 for percent change- Let base $=$ midpoint or average of two values.
- Here, average of Des Moines and Chicago = $\frac{127+2}{2}=$ \qquad -
- Using average as base, percent change = $\underline{247-127}=$ \qquad -.

Percent change with multiplication: approximation formula

- Suppose $Z=X \times Y$.
- Then \% change in $\mathrm{Z}=$ approximately \% change in X plus \% change in Y.
- Example: If X increases by 3% and Y increases by $2 \%, \mathrm{Z}$ will \qquad crease by about
\qquad $\%$.
- Example: If X increases by 3% and Y decreases by 4%, then Z will \qquad crease by about \%.

MATH REVIEW: PERCENT CHANGES

Page 2

Percent change with multiplication: applications

- Suppose price increases by 3% and quantity decreases by 2%.
- Then revenue (=price times quantity) will by about \qquad $\%$.
- Suppose the number of firms decreases by 2% but the average number of employees at each firm increases by 5%.
- Then total employment will
by about \qquad \%.

Conclusions

- Percent change (or percent difference) equals the change divided by the base.
- The midpoint formula uses the \qquad of the two values as the base.
- The percent change of $(\mathrm{X} \times \mathrm{Y})$ is roughly the
\qquad of $\%$ changes in X and Y.

PRODUCTION FUNCTIONS

Page 1

PRODUCTION FUNCTIONS

- What do economists mean by "production"?
- What do they mean by "diminishing returns"?

What is production?

- Production = transformation of inputs (or resources) into outputs.
- Production takes place in factories, offices, households, etc.
- Kinds of outputs:
- goods like \qquad .
- services like \qquad .

Inputs (or resources) for production

- Labor = \qquad
- Capital = \qquad
- Land = \qquad
- Materials (or intermediate inputs) = goods produced elsewhere, and used up here to produce something else.

What is a production function?

- Production function = relationship between the quantity of inputs and the quantity of outputs.
- Can be represented by:
- schedule or table.
- math formula (e.g..: output $=\sqrt{\text { input }}$).
- graph.

Simple example of production function

Hours worked	Bushels raked
1 hour	9 bushels
2 hours	16 bushels
3 hours	21 bushels
4 hours	24 bushels

- Graph is sometimes called product curve.

Average product

- Average product = output / input.
- Example: If 5 workers together can dig 20 ditches per day, their $\mathrm{AP}=$ \qquad ditches per worker.

PRODUCTION FUNCTIONS

Page 2

Marginal product

- Marginal product $=$ increase in output caused by the "last" unit of input.
- Example: Suppose adding 1 more worker raises output from 20 ditches to 23 ditches.
- MP of 6th worker = ditches per worker.

Marginal product $=$ change in output / change in input

- MP
$=\Delta$ output / Δ input.
- Example: Suppose going from 5 to 7 workers raises output from 20 to 24 ditches.
- MP in this range $=$
\qquad -

Diminishing returns to an input

- In many real-world production processes, additional units of input yield progressively smaller additional units of output.
- Diminishing returns to an input = situation where marginal product \qquad as input increases.
- Implies graph of production function gets
\qquad steep as input increases.

Diminishing returns in the real world

Workers on an assembly
line:

- First few workers produce a lot of cars.

Input=workers

PRODUCTION FUNCTIONS

Page 3

Diminishing returns in the real world (cont'd)

Fertilizer on a field:

- First application improves crop yield a lot.

Conclusions

- A production function shows a relationship between inputs and output.
- \qquad $=$ total output divided by total input.
- \qquad $=$ the contribution of the last unit of input to output.
- usually declines as more units of the input are added: " \qquad ."

Diminishing returns in the real

 world (cont'd)Computers in an office:

- The first computer is really useful.

PRODUCTION POSSIBILITIES

- Why is there a trade-off between different kinds of output?
- How does production relate to the concept of opportunity costs?
- With a fixed stock of available inputs, we face a tradeoff in how these inputs can be used.
- If we use all available inputs, then producing more of one kind of output
requires producing less of another. producing more of one kind of outp
requires producing less of another.
- Problem of scarcity arises.

Production possibilities

- When the same inputs can be applied to producing different outputs, we have a whole range of production possibilities from which to choose.
- Real-world examples:

PP curves

- Can express this tradeoff graphically as a "production possibilities curve."
- Axes are different kinds of output.

Output \#2

Example 1: raking v. mowing

- Suppose the same person
- could alternatively mow lawns, at 2 lawns per hour (no diminishing returns).
- has 4 hours of time available for work.
- Then: hours spent mowing $=4$ - hours spent raking.

Example 1: raking v. mowing
(cont'd)

Raking leaves		Mowing lawns	
Hours	Bushels	Hours	Lawns
0	0	4	
1	9	3	
2	16	2	
3	21	1	
4	24	0	

PRODUCTION POSSIBILITIES

Page 2

Example 1: graph of PP curve

- Where did this graph come from?
- Vertical axis is 2nd column on previous slide.
- Horizontal axis is 4th column on previous slide

Opportunity cost

- Opportunity cost of a good = amount of something that must be given up in order to get something else.
- Usually expressed as a \qquad number.

Example 2: Using slope of PP curve

 to compute opportunity cost- Suppose we are given that the slope of a production possibility curve at efficient point A is -2 :
$\frac{\Delta \text { Food }}{\Delta \text { Shelter }}=-2$

Points on graph represent combinations of outputs.

- Any point is either:
- infeasible (impossible).
- technically efficient.
- inefficient.

Efficiency in production

Example 2: Using slope of PP curve to compute opportunity cost (cont'd)

- Now suppose we wanted to increase production of shelter by 10 units.
- Clearly, we would have to production of food, but by how much?

Example 2: Using slope of PP curve to compute opportunity cost (cont'd)

- Substitute Δ Shelter $=$ 10 into slope formula: $-2=\frac{\Delta \text { Food }}{\Delta \text { Shelter }}=\frac{\Delta \text { Food }}{10}$
- Solve to get Δ Food $=$ \qquad .
- Food production would have to decrease by \qquad units.

PRODUCTION POSSIBILITIES

Page 3

Example 2: Using slope of PP curve to compute opportunity cost (cont'd)

- Conversely suppose we wanted to increase production of food by 10 units.
- Clearly, we would have to production of shelter, but by how much?

Example 2: Using slope of PP curve to compute opportunity cost of food

- Substitute Δ Food $=10$ into slope formula:
$-2=\frac{\Delta \text { Food }}{\Delta \text { Shelter }}=\frac{10}{\Delta \text { Shelter }}$
- Solve to get Δ Shelter = \qquad .
- Shelter production would have to decrease by \qquad units.

Example 3: opportunity cost of one more unit

- Suppose we are given slope of a production possibility curve at efficient point B is -5 .
- What is opp. cost of one more unit of health care at point B?

Example 3: opportunity cost of one more unit of health care

- Substitute
Δ Health care $=1$ into slope formula:
$-5=\frac{\Delta \text { Other goods }}{\Delta \text { Health care }}=\frac{\Delta \text { Other goods }}{1} \frac{\text { © }}{\square}$
- Δ Other goods $=$
- So opp. cost of a unit of health care is units other goods.
\qquad

Example 3: opportunity cost of one more unit of other goods

- Substitute Δ Other goods $=1$ into slope formula: $-5=\frac{\Delta \text { Other goods }}{\Delta \text { Health care }}=\frac{1}{\Delta \text { Health care }}$
- Δ Health care = \qquad
- So opp. cost of a unit of other goods is \qquad units health care.

Slope $=$ opportunity cost of one more unit

- Thus, |slope $\mid=$ opp. cost of one more unit of whatever good is on
\qquad axis
- In this graph, |slope| of PP curve is opp. cost of one more unit of
\qquad _.

PRODUCTION POSSIBILITIES

Page 4

What does reciprocal of slope tell us?

- Conversely, $\mid 1 /$ slope $\mid=$ opp. cost of one more unit of whatever good is on
\qquad axis
- In this graph, $\mid 1 /$ slope \mid of PP curve is opp. cost of one more unit of \qquad -.

Decreasing |slope| implies

 decreasing opportunity cost- If PP curve is "bowed in," opp. cost of one more unit is
${ }^{\text {a }}$
more is produced.
- There are gains from
- Possible cause: setup costs.

Increasing |slope| implies increasing opportunity cost

- If PP curve is "bowed out," opp. cost of one more unit is
more is produced.
- There are gains from
- Possible cause: special resources useful for only kind of output.

Health care

Increasing or decreasing opportunity costs in the real world?

- Decreasing opportunity costs are typical of an individual person's PP curve.
- Example:
- Increasing opportunity costs are typical of a region or nation's PP curve.
- Example:

Example 1: raking v. mowing again

- Does opportunity cost appear to increase or decrease in this example?

Computing opportunity cost per unit along intervals of PP curve

Production possibility curve	Opportunity cost of...		
Bushels raked	Lawns mowed	...a bushel raked	\ldots a lawn mowed
0 bushels	8 lawns		
9 bushels	6 lawns		
16 bushels	4 lawns		
21 bushels	2 lawns		
24 bushels	0 lawns		

PRODUCTION POSSIBILITIES

Page 5

Economic growth

- Economic growth occurs because either:
- people learn how to produce more output with the same inputs (technological progress).
- the stock of available inputs increases.

Capital accumulation and economic growth

- Growth in the future depends partly on choices made now.
- If more resources are devoted to producing capital goods (rather than consumption goods) growth will be faster.
- Why? \qquad

Capital accumulation and economic growth

- In this diagram, which choice will cause faster economic growth?

Conclusions

- When the same inputs can be used to produce different kinds of outputs, producible combinations of outputs can be graphed as a curve.
- The opportunity cost of one more unit of the output on the horizontal axis is the \qquad of the PP curve.
- Increasing opportunity cost occurs if the PP curve is "bowed \qquad .$"$

COMPARATIVE ADVANTAGE

Page 1

COMPARATIVE ADVANTAGE

- When does one producer have a comparative advantage over another?

Opportunity cost (review)

- Opportunity cost of a good = amount of other good that must be given up in order to get one more unit of the first good.
- = |slope| of PP curve with the first good on the horizontal axis.

Comparative advantage: definition

- Suppose two producers have different opportunity costs.
- Producers could be people, regions, countries, etc.
- The producer with the lower opportunity cost is said to have a comparative advantage in that particular good.

Example 1: Farmers A and B

	Opportunity cost of growing 1 unit of..	
	Wheat	Vegetables
A	units veg.	units wheat
B	units veg.	units wheat

Who has comparative advantage in wheat? Who has comparative advantage in vegetables?

\qquad

Absolute advantage versus comparative advantage

- Farmer B can produce more wheat or more vegetables than Farmer A.
- So Farmer B has an absolute advantage in both crops.
- But Farmer B has a comparative advantage in only one crop (\qquad).
- Farmer A has a comparative advantage in the other (\qquad).

COMPARATIVE ADVANTAGE

Page 2

Absolute advantage versus comparative advantage

- Farmer B can produce more wheat or more vegetables than Farmer A.
- So Farmer B has an absolute advantage in both crops.
- But Farmer B has a comparative advantage in only one crop (\qquad wheat \qquad _).
- Farmer A has a comparative advantage in the other (\qquad vegetables \qquad).

Absolute advantage versus

 comparative advantage (cont'd)- Country Y can produce more computers or more bicycles than Country X.
- So Country Y has an absolute advantage in both goods.
- But Country Y has a comparative advantage in only one good (\qquad).
- Country X has a comparative advantage in the other (\qquad).

Conclusions

- A producer has a \qquad advantage over another producer in some activity if the first producer has lower opportunity cost.
- A producer (no matter how productive) can have a comparative advantage in every activity.

GAINS FROM TRADE
Page 1

GAINS FROM TRADE

- Why are goods and services traded?
- When can both parties gain from trade?

Voluntary trade

- People trade goods and services voluntarily only if both parties expect to be better off as a result.
- Both parties must expect to enjoy gains from trade.

Why might gains from trade

 occur?- Each party might have something that the other party wants more. Example:
- Each party might produce something that the other party wants more. Example:
- The two parties both produce both goods and desire the goods equally but they have different opportunity costs.
- Focus of this presentation.

Produce or trade?

- Key principle: You should not produce a good for yourself if you can get it at lower cost by trading.
- Here, "lower cost" means lower opportunity cost.
- Trading allows you to get \qquad your own production-possibility curve.

When does trading work?

- If two producers have \qquad opportunity costs, then each will prefer to
- specialize in producing the good in which it has a comparative advantage.
- trade for the other good.
- Then \qquad producers can get OUTSIDE their own production possibility curves.

GAINS FROM TRADE

Page 2

Example 1: specialization

- Suppose Farmer B offers 1 unit of wheat to Farmer A.
- Can Farmer A give some vegetables in return, and BOTH farmers come out ahead?

Example 1: trade

- Farmer A comes out ahead if A gives B less than \qquad units of vegetables.
- Farmer B comes out ahead if B receives more than \qquad units of vegetables.

Example 1: BOTH are better off

Example 2 revisited

- Both farmers come out ahead if Farmer A gives Farmer B between 2 and 4 units of vegetables.
- Example: Farmer A gives \qquad units of vegetables.

- Country X has comp. adv. in \qquad
- Country Y has comp. adv. in \qquad
- Suppose countries produce circled quantities.

Example 2: specialization

- Suppose Country Y exports 1 computer to Country X.
- Can Country X export some bicycles back to Country Y, and BOTH countries come out ahead?

Example 2: trade

- Country X comes out ahead if X gives Y less than \qquad bicycles.
- Country Y comes out ahead if Y receives more than \qquad bicycle.

GAINS FROM TRADE

Page 3

Example 2: BOTH are better off

- Both countries come out ahead if Country X exports between 1 and 3 bicycles back to Country Y.
- Example: Country X exports \qquad bicycles.

Conclusions

- Two producers with different opportunity costs can always \qquad enjoy gains from trade.
- Each producer must
- specialize in producing the good in which it has a \qquad advantage.
- trade that good for the other good.

INSTITUTIONS THAT SUPPORT TRADE

Page 1

INSTITUTIONS THAT SUPPORT TRADE

- Does trading happen automatically?
- What institutions help maximize the gains from trade?

Supporting trade

- Trade does not happen automatically.
- In some times and places, it is easier to
\qquad what you want.
- (Or to get the government to take it from someone and give it to you!)
- In some times and places, it is very difficult to \qquad someone to trade with.

Property rights

- Property rights $=$ social arrangements governing ownership, use, and disposal of goods and services.
- Kinds of property
-

 property

- \qquad property

- \qquad property

Why property rights matter

Without property rights,

- People can take possession of whatever they have the ability to obtain ("stealing" or "tribute").
- Resources are diverted from production into stealing and protecting property from being stolen.

Why money matters

- Disadvantage of barter: To obtain desired goods via barter requires either:
- double coincidence of wants, or
- (potentially long) sequence of transactions.
- Monetary exchange avoids these problems.

INSTITUTIONS THAT SUPPORT TRADE
Page 2

Markets

- Markets = institutions that link buyers and sellers, enabling them to get information and do business.
- In a well-functioning market:

- anyone can trade with \qquad else.
- prices at which people are buying and selling are \qquad to everyone.

Why markets matter

- Markets simplify the negotiations required for trade. All one needs to know is:
- the going price of the good.
- Market participants decide whether to buy or sell by comparing their own opportunity cost with the price.
- If opportunity cost > price, buy.
- If opportunity cost $<$ price, sell.

Conclusions

- \qquad rights facilitate trade and reduce the resources devoted to stealing or guarding against stealing.
- Trading is vastly simplified if everyone agrees to accept a particular good as payment. That good is called \qquad .
- A well-functioning market tends to follow the \qquad .

DEMAND

Page 1

- How do consumers respond to changes in a good's price?

Response to price

- If the market is functioning well, it will follow the law of \qquad -.
- How will buyers and sellers respond to this price?

The "Law of Demand"

- Price and quantity demanded are negatively related, ceteris paribus.
- Ceteris paribus means " \qquad .$"$

Buying and selling

- When money is used, every trade involves a
- \qquad , who gives up money in exchange for a good or service
- \qquad , who gives up a good or service in exchange for money.

DEMAND

Page 2

Reasons for Law of Demand

(1) Substitution effect: As price of one good rises, consumers substitute other goods that become relatively cheaper.

- Example: If price of beef rises, consumers switch to \qquad .
- Example: If price of orange juice rises, consumers switch to \qquad .

Reasons for Law of Demand

(2) Income effect: Even if no substitutes are available, a rise in price implies consumer cannot afford as much as before.
Purchasing power of income falls, so buy less of everything, including this good.

- Example: If apartments rents go up, consumers cut back on everything, move to
\qquad .

Other factors influencing the quantity demanded

- Prices of related goods.
- Income of consumers.
- Expected future prices of same good.
- Population and demographic structure.
- Product quality.
- Preferences.

Change in demand $=$ shift in demand curve

- When these other factors change, we say there is a change in demand. The demand curve shifts.
- By contrast, when price of good itself changes, no change in demand and no shift in curve.

Effect of prices of related goods on quantity demanded

- Can be positive or negative.
- Substitute = good whose price has a
\qquad effect on quantity demanded of first good.
- Complement $=$ good whose price has a effect on quantity demanded of first good.

Hamburgers and hotdogs are

- If the price of hamburgers increases, people eat hot dogs, even if the price of hot dogs does not change.

DEMAND

Page 3

Mustard and hotdogs are

- If the price of hot dogs increases, people eat
\qquad mustard, even if the price of mustard does not change.

SUVs and gasoline are

- If the price of gasoline increases, people buy

SUVs,
even if the price of SUVs does not change.

Effect of income on quantity demanded

- Can be positive or negative.
- Normal good = good whose demand
\qquad as income increases.
- Inferior good = good whose demand
\qquad as income increases.

Most goods are

- As people's incomes rise, they buy
\qquad cars, appliances, clothing, food, energy, etc., even if the prices of those goods do not change.

A few goods are

\qquad goods

- As people's incomes rise, they buy bus rides, second-hand clothes, and macaroni-andcheese dinners, even if the prices of those goods do not change.

Demand for bus rides
$\underset{\text { Quantity of bus rides }}{\text { 2n }}$

Effect of expected future prices on quantity demanded

- Have a positive effect on the quantity demanded.
- If prices are expected to fall, people buy less now.
- If prices are expected to rise, people buy more now.
- Examples: \qquad

DEMAND

Page 4

Effect of population and age structure

- Population size has a positive effect.
- Examples: \qquad
- Effect of age structure differs across goods.
- Examples: \qquad

Effect of other variables on quantity demanded

- Quality has positive effect (in general).
- Examples: \qquad
- Preferences and tastes affect quantity demanded.
- Examples: \qquad

Conclusions

- The Law of Demand states that price and the quantity demanded by consumers are related, ceteris paribus.
- It holds because any price change has a
\qquad effect and an \qquad effect.
- Other things can change the quantity demanded, shifting the demand curve, including the \qquad of related goods and the \qquad of consumers.

SUPPLY

Page 1

- How do producers respond to changes in a good's price?

Supply relation (or supply curve)

- Supply relation $=$ relation between the price of a good and the quantity that sellers wish to sell.
- Can be represented by:
- schedule or table.
- mathematical formula.
- graph.

The "Law of Supply"

- Price and quantity supplied are positively related, ceteris paribus.
- Ceteris paribus means " \qquad ."

Simple example of supply relation: supply of coconuts

Price	
Quantity	
$\$ 1$	0
$\$ 2$	200
$\$ 3$	400
$\$ 4$	600
$\$ 5$	800
$\$ 6$	1000
$\$ 7$	1200

Other factors influencing the

 quantity supplied- Prices of inputs.
- Technology.
- Government regulations.
- Expected future prices of same good.
- Number of suppliers.

SUPPLY

Page 2

Change in supply $=$ shift in supply curve

- When these other factors change, we say there is a change in supply. The supply curve shifts.
- By contrast, when price of good itself changes, no change in supply and no shift in curve.

Effect of prices of inputs on quantity supplied

- Have a negative effect on quantity supplied.
- Reason: Because an increase in input prices increases the cost of producing the good.

Example: increase in wages of fast-food workers shifts supply of fast food to the

- Fast-food workers are an input to making fast food.

Example: decrease in price of petroleum shifts supply of gasoline to the

- Petroleum is an input to making gasoline.

Effect of technology on quantity supplied

- New production technology has a positive effect on quantity supplied.
- Reason: Improved production methods the cost of production, by allowing producers to do more with less.
- Examples:

Example: development of "lean" production methods shifts supply of manufactured goods to the \qquad

- "Lean" production methods use fewer workers, less factory space, and less energy.

SUPPLY

Page 3

Effect of government regulations on quantity supplied

- Have a negative effect on quantity supplied to the extent that they increase the cost of production.
- Most government regulations do increase the cost of production-otherwise they would be adopted voluntarily!

Example: environmental regulations shift supply of electricity to the

- Environmental regulations require electricity generators to put "scrubbers" on smokestacks.

Effect of expected future prices

 on quantity supplied- Have a negative effect on the quantity supplied.
- If prices are expected to fall in the future, suppliers sell \qquad now.
- If prices are expected to rise in the future, suppliers sell \qquad now.
- Examples:

EQUILIBRIUM

Page 1

MARKET EQUILIBRIUM

- What determines market price and quantity?

Demand and supply together

- Demanders and suppliers simultaneously make decisions about how much they want to buy or sell, in response to the market price.

What if quantity demanded does not equal quantity supplied?

- Let:
$Q_{D}=$ quantity demanded.
$\mathrm{Q}_{\mathrm{S}}=$ quantity supplied.
- At any given price, Q_{D} might not equal Q_{S}.
- But in that case, price will tend to
- Not an equilibrium!

Excess demand = shortage

- At low prices, $\mathrm{Q}_{\mathrm{D}}>\mathrm{Q}_{\mathrm{S}}$.
- "Excess demand" or shortage.
- Some consumers are excluded.
- Excluded consumers bid up the price.
- Price tends to \qquad .

Excess supply = surplus

- At high prices, $\mathrm{Q}_{\mathrm{D}}<\mathrm{Q}_{\mathrm{S}}$.
- "Excess supply" or surplus.
- Some producers are excluded.
- Excluded producers cut the price.
- Price tends to \qquad

EQUILIBRIUM

Page 2

Example 1: market for coconuts
If price $=\$ 5$, excess \qquad $=$ units.

Market equilibrium

- The only stable price is where demand and supply curves intersect:
- $\mathrm{P}^{*}=$ equilibrium price
- Q* * equilibrium quantity.

Example 2: market for steel If price $=\$ 20$, excess		
Quantity Price per ton demanded (tons)	Quantity supplied (tons)	
$\$ 10$	800	200
$\$ 20$	700	250
$\$ 30$	600	300
$\$ 40$	500	350
$\$ 50$	400	400
$\$ 60$	300	450
$\$ 70$	200	500

Example 1: market equilibrium
P*= \qquad , $Q^{*}=$ \qquad , Revenue= \qquad .

EQUILIBRIUM

Page 3

$\begin{array}{c}\text { Example 2: } \\ \text { Equilibrium price }=\$ \\ \text { Quantity }\end{array}$		
Price per ton		
demanded (tons)		

supplied (tons)\end{array}\right]\)

Example 3: market for orange juice

- Suppose demand is given by $\mathrm{Q}_{\mathrm{D}}=400-20 \mathrm{P}$
- And supply is given by $\mathrm{Q}_{\mathrm{S}}=-50+30 \mathrm{P}$
- Equilibrium means $\mathrm{Q}_{\mathrm{D}}=\mathrm{Q}_{\mathrm{S}}$, $400-20 \mathrm{P}=-50+30 \mathrm{P}$

How soon do markets reach equilibrium?

- It may take time for markets to adjust to a new equilibrium.
- Usually, the better the communication between buyers and sellers,
- the \qquad the duration of any excess supply or excess demand.
- the \qquad the market reaches the new equilibrium.

Do markets always reach equilibrium eventually?

- Government policies may deliberately prevent price from reaching equilibrium.
- Examples:

Conclusions

- Equilibrium price and quantity are determined by the intersection of supply and demand curves.
- Any other price is likely to be unstable because it will create either a shortage (excess \qquad _) or a surplus (excess \qquad).

SHIFTS IN DEMAND AND SUPPLY CURVES
Page 1

SHIFTS IN DEMAND AND SUPPLY CURVES

- What happens if demand or supply shift?
- What happens if both curves shift?

Effect of rightward shift in demand

- Suppose something shifts demand to the right, such as:
- increase in price of substitute
- decrease in price of complement.
- increase in income.

P* \& Q* both \qquad

Effect of leftward shift in demand

- Suppose something shifts demand to the left, such as:
- decrease in price of substitute
- increase in price of complement.
- decrease in income

P* \& Q* both \qquad .

Effect of rightward shift in supply

- Suppose something shifts supply to the right, such as:
- input price decreases.
- discovery of new production method.
- decrease in govt. regulation.
P* \qquad ,
Q* \qquad .

Effect of leftward shift in supply

- Suppose something shifts supply to the left, such as:
- increase in input price.
- increase in govt. regulation.
P* \qquad -,
Q* \qquad .

SHIFTS IN DEMAND AND SUPPLY CURVES

Page 2

Example: World automobile market

- Suppose incomes of consumers fall (perhaps due to a recession).
- Implications:
- P* \qquad
- Q^{*} \qquad

Example: Agricultural market

- Suppose there is a crop failure due to bad weather or disease.
- Implications:
- P*

Example: Market for illegal drugs

- Suppose tougher law enforcement raises the likelihood of arrest for persons transporting drugs into the U.S.
- Implications:

- P*

- Q^{*} \qquad

Simultaneous shifts in demand and supply in same direction

- If both curves shift to right, then:
- Q^{*} will surely

But P^{*} could either increase or decrease, depending on shapes of curves, and which curve shifts more.

Simultaneous shifts in demand and supply in opposite directions

- If demand shifts to right while supply shifts to left, then:
- P^{*} will surely

But Q* could either increase or decrease, depending on shapes of curves, and which curve shifts more.

SHIFTS IN DEMAND AND SUPPLY CURVES

Page 3

Example: Market for computers

1. Due to technological breakthroughs, the price of computer chips falls sharply.
2. Simultaneously, the price of software falls.

- Implications:
- P* \qquad
- Q^{*}

Example: Market for U.S.-made cars

1. Suppose the United Auto Workers win a major wage increase.
2. Simultaneously, the price of foreign-made cars decreases

- P^{*} \qquad

- Q^{*} \qquad Q

Example: Market for coal

1. Suppose a new law requires strip-mining companies to spend more money for land restoration.
2. Simultaneously, a war in the Middle East raises the price of petroleum.

- P^{*} \qquad Q*

Conclusions

How to predict effects of shifts in curves:
(1) Draw demand-and-supply diagram.
(2) Determine which \qquad is shifting, and which \qquad -.
(3) Read off changes in quantity and price from diagram.
(4) If both curves shift, remember that one variable (price or quantity) \qquad be predicted without more info.

WILLINGNESS-TO-PAY AND CONSUMER SURPLUS

- How can we measure the gains from trade for consumers?

Reading the demand curve horizontally

- At a price of $\$ 5$ per gallon, consumers would buy million gallons.
- At a price of $\$ 3$ per gallon, consumers would buy million gallons.

Reading the demand curve vertically

Why willingness-to-pay falls

- First few gallons are applied to valued uses (going to work, shopping, etc.).
- Often there are few or no substitutes available for these uses.

Two ways to read a demand curve

1. Horizontally: for any given price, the curve shows how many units consumers are willing to buy.
2. Vertically: for any given quantity, the curve shows the maximum price that consumers are willing to pay for the last unit.

- Consumers are willing to pay a maximum of \$ millionth gallon
- Consumers are willing to pay a maximum of Σ \$ \qquad for the 60 millionth gallon.

Why willingness-to-pay falls

 (cont'd)- Later gallons are applied to \qquad valued uses (recreation, leisure travel, etc.).
- Often substitutes are available for these uses (air or train travel, etc.).

WILLINGNESS-TO-PAY AND CONSUMER SURPLUS

Page 2

> Price on demand curve
> $=$ willingness-to-pay
> $=$ consumers' marginal benefit

- Maximum price consumers are willing to pay for a unit
$=$ marginal benefit (in \$) that consumers enjoy from that unit.
- Rational consumers buy until marginal benefit equals \qquad .

Total willingness-to-pay for all units

- Compute this as area under demand curve.
- Example: if price $=$ $\$ 4$, consumers buy 40 million gallons.
- Total willingness-topay $=$ shaded area $=$ \$ \qquad million.

Price $=$ willingness-to-pay only for the last unit purchased

- If price $=\$ 3$, consumers buy 50 million gallons.
- The 50 millionth gallon is worth about \$ \qquad to consumers.
- Prior gallons are worth
\qquad than \$3.

Consumer surplus for a particular unit: definition

- Difference between what the consumer is willing to pay for a particular unit and what the consumer actually pays.
$=$ height of demand curve minus market price P^{*}.

Total consumer surplus: definition

- Total CS = sum of consumer surpluses for all units purchased.
- Total CS = benefit to consumers of being able to buy as much of the good as they want (at the market price) rather than being unable to buy it at all.
- Often just called "consumer surplus."

WILLINGNESS-TO-PAY AND CONSUMER SURPLUS

Page 3

Total consumer surplus for all units

- Compute this as area between demand curve and price.
- Example: if price $=$ $\$ 4$, consumers buy 40 million gallons.
- Total consumer surplus $=$ shaded area $=\$$ \qquad million.

Total willingness-to-pay
$=$ spending + total consumer surplus

- Total consumer surplus is area of triangle.
- Spending $=\mathrm{P}^{*} \times \mathrm{Q}^{*}=$ area of rectangle.

Total willingness-to-pay $=$ spending + total consumer surplus: example

- Suppose price $=\$ 4$.
- Total willingness-topay = \$ \qquad million.
- Spending $=\$ 4 \times 40=$ \$ \qquad million.
- Total consumer surplus $=$ \$ \qquad million.

How much is a price reduction

 worth to consumers?- Common (but incorrect) answer = simple cost saving with no change in quantity.
- Correct answer = increase in
\qquad .

Simple cost saving from a price decrease

- Suppose price of gasoline fell from \$4 to $\$ 2$.
- Simple cost saving $=$ change in price \times old quantity $=\$$ \qquad million.

Value to consumers of a price decrease

- Change in consumer surplus
$=$ area of
$=$ height \times avg of paralleel
sides
$=\$ 2 \times(1 / 2)(40+60)$
million
$=\$$ \qquad million.

WILLINGNESS-TO-PAY AND CONSUMER SURPLUS
 Page 4

Value to consumers of price decrease is always \qquad than simple cost saving

- The difference is greater...
- the more elastic (flatter) the demand curve.
- the bigger the price change.

Impact on consumers of a leftward shift in supply

- Suppose the supply of gasoline shifts left.
- The price rises from \$4 to \$
- The loss to consumers = decrease in consumer surplus $=$ \$ \qquad .

Impact on consumers of a rightward shift in supply

- Suppose the supply of shirts shifts right.
- The price falls from $\$ 7$ to \$ \qquad -.
- The benefit to consumers $=$ increase in consumer surplus $=$ \$ \qquad .

Conclusions

- Height of demand curve = how much a person would be willing to pay for that unit.
- Willingness-to-pay for successive units
\qquad -.
- Consumer surplus $=$ \qquad between how much a person is willing to pay and the price actually paid (P^{*}).
- Total consumer surplus = \qquad between demand curve and horizontal line at P^{*}.

Two ways to read a supply curve

1. Horizontally: for any given price, the curve shows how many units producers want to produce and sell.
2. Vertically: for any given quantity, the curve shows the minimum price producers must be paid to supply that quantity.

Reading the supply curve horizontally

- At a price of $\$ 5$ per gallon, producers would sell million gallons.
- At a price of $\$ 3$ per gallon producers would sell million gallons.

- Producers must be paid a minimum of \$ \qquad for the 40 millionth gallon.
- They must be paid a minimum of \$ \qquad for the 80 millionth gallon.

Reading the supply curve vertically

Why the minimum price producers must be paid rises (cont'd)

- When the price is high, producers also use their less efficient factories, fields, machines, oil wells, etc.
- These \qquad -cost methods of production are profitable only when the price is high.

MARGINAL COST AND PRODUCER SURPLUS Page 2

Price on supply curve $=$ producers ${ }^{\prime}$ marginal cost of production

- Minimum price producers must be paid $=$ marginal cost to producers of producing the last unit.
- Rational producers sell until their marginal cost equals the market \qquad -.

Producer surplus for a particular

 unit: definition- Difference between minimum price producer must be paid and what the producer is actually paid.
$=$ market price minus height of supply curve.

Total producer surplus: definition

- Total PS = sum of producer surpluses for all units sold.
- Total PS = net benefit to producers of being able to sell as much of the good as they want (at a given price) rather than being unable to sell it at all.
- Often just called "producer surplus."

Producer surplus for a particular unit: example

- Suppose market price $=\$ 5$.
- Producer surplus for the 20 millionth gallon $=\$$ \qquad .
- Producer surplus for the 40 millionth gallon = \$ \qquad -

Total producer surplus for all units

- Compute this as area between supply curve and market price.
- Example: if price $=$ $\$ 5$, producers sell 60 million gallons.
- Total producer surplus $=$ shaded area
= \$ \qquad million.

MARGINAL COST AND PRODUCER SURPLUS Page 3

Changes in PS

- If the market price rises, PS \qquad

Example: decrease in producer surplus from a leftward shift in demand

- Suppose the demand for film cameras shifts left.
- The price falls from \$25 to \$ \qquad .
- The harm to producers $=$ decrease in producer surplus = \$ \qquad .

Total surplus $=$ consumer surplus + producer surplus

- Consumer surplus $=$ area between demand curve and market price.
- Producer surplus = area between supply curve and market price.

Conclusions

- Height of supply curve = marginal cost to producers of each unit sold.
- Marginal cost for successive units \qquad .
- Producer surplus = \qquad between marginal cost and actual market price.
- Total producer surplus = \qquad between supply curve and market price.

PART 2

Applications of Supply and Demand

Big ideas: International trade and government intervention in markets create winners and losers in predictable ways. How much they win or lose depends on the shapes of demand and supply curves.

Famous quote: "Every individual ... neither intends to promote the public interest, nor knows how much he is promoting it ...He intends only his own gain, and he is in this ... led by an invisible hand to promote an end which was no part of his intention. Nor is it always the worse for society that it was no part of it. By pursuing his own interest he frequently promotes that of society more effectually than when he really intends to promote it."
--Adam Smith, The Wealth of Nations (1776)

MEASURING SENSITIVITY

Page 1

MEASURING SENSITIVITY

- Why do we care how sensitive one economic variable is to another?
- Why is elasticity a good measure of sensitivity?

Price and quantity demanded

- "Law of Demand" says that quantity demanded will fall as price rises, but does not say by how much.
- Often would like to know how much.

When price sensitivity matters: examples

- Suppose cable TV company raises rates by 20%. How many fewer customers will they have?

- Suppose government wants to cut cigarette consumption in half. By how much must cigarette prices be raised?

- Suppose weather problems will cut a harvest by 10%. How much will prices rise?

Price and quantity supplied

- "Law of supply" says that quantity supplied will rise as price rises, but does not say by how much.
- Often would like to know how much.

Steepness of demand curves reveals sensitivity to price

- Steep curve implies quantity demanded is
\qquad to price.
- Flat curve implies quantity demanded is
\qquad to price.

When price sensitivity matters:

examples

- Suppose government is having trouble finding qualified applicants to fill civil service jobs. How many more applicants will it get if pay is increased by 10% ?
- Suppose government wants to reduce milk production by 5%. By how much must milk prices be reduced?

MEASURING SENSITIVITY

Page 2

Steepness of supply curves reveals sensitivity to price

- Steep curve implies quantity supplied is
\qquad to price.
- Flat curve implies quantity supplied is ___ to price.

Why slope $(\Delta \mathrm{P} / \Delta \mathrm{Q})$ is not a good measure of sensitivity

- Even if each individual person behaves the same way, the bigger market always has
\qquad slope
(in absolute value).

An alternative measure of sensitivity

- Instead of ratio of changes, use ratios of percent changes:

$$
\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{\Delta Q / Q}{\Delta P / P}
$$

- Any ratio of percent changes is called an elasticity in economics.

Why slope $(\Delta \mathrm{P} / \Delta \mathrm{Q})$ is not a good measure of sensitivity (continued)

- Slope depends on units of measure for quantity. Example: gallons v. \qquad -.
- Slope depends on units of measure for price (currency). Example: dollars v.

\qquad -.

Why elasticity is more useful than slope

- If each individual person behaves the same way, then different sized markets have the
\qquad elasticity value.
- Percent changes are "pure numbers," and do not depend on the units of measure for
\qquad or \qquad .

MEASURING SENSITIVITY

Page 3

Conclusions

- Often we need to quantify the sensitivity of one variable to another variable.
- Slopes, which are ratios of changes, depend on the size of the market and the
- Ratios of percent changes, called
\qquad , do not have these problems and are more commonly used in economics.

THE PRICE ELASTICITY OF DEMAND

THE PRICE ELASTICITY OF DEMAND

- What is the "price elasticity of demand"?
- What does its value reveal?

Price elasticity of demand:
 example

Suppose that when price of milk rises by 5 percent, the quantity demanded declines by 3 percent. Then
$\varepsilon=\frac{\% \operatorname{chg} Q}{\% \operatorname{chg} P}=\frac{-3 \%}{5 \%}$
$=$

What the value of $\varepsilon=\frac{\% \operatorname{chg} Q}{\% \operatorname{chg} P}$ means

- If Q is very sensitive to P,
- then ε is \qquad in absolute value,
- say "demand is very elastic."
- If Q is not very sensitive to P ,
- then ε is \qquad in absolute value,
- say "demand is not very elastic."

\qquad $\xrightarrow[\mathrm{Q}]{\mathrm{P}}$

Price elasticity of demand: definition

- Price elasticity of demand:

$$
\varepsilon=\frac{\% \operatorname{chg} Q}{\% \operatorname{chg} P}=\frac{\Delta Q / Q}{\Delta P / P}
$$

where changes are measured along the demand curve.

- By the "Law of Demand," ε should be
\qquad (but many authors drop the negative sign).

Price elasticity of demand: another example

Suppose that when price of airfares falls by 8 percent, then number of passengers increases by 10 percent. Then
$\varepsilon=\frac{\% \operatorname{chg} Q}{\% \operatorname{chg} P}=\frac{10 \%}{-8 \%}=$
$=$

Some definitions

Unitary-elastic
demand: $|\varepsilon|=1$.
Elastic demand:
Inelastic demand:
$|\varepsilon|<1$.

THE PRICE ELASTICITY OF DEMAND Page 2

Some estimates of price elasticities of demand

- Food:
-0.21
- Medical services: -0.22
- Electricity: -1.14
- Automobiles: -1.20
- Beer: -0.26
- Wine: $\quad-0.88$
- Cigarettes: -0.35

Source: Reported in Nicholson, Microeconomic Theory: Basic Principles and Extensions, 6th edition, Dryden, 1995, p. 219, table 7.3.

What determines ε ?
 Share in total budget

- Demand is more elastic ($|\varepsilon|$ is larger) if the good occupies a large share of consumers' total budgets.
- Examples of goods that occupy a large share of consumers' budgets:
- Examples of goods that occupy a small share of consumers' budgets:

Extreme case: perfectly elastic demand

- $\varepsilon=\frac{\% \operatorname{chg} Q}{\% \text { chg } P}$
$=$ minus infinity.
- Even the smallest price increase reduces quantity demanded to zero.

What determines ε ? Close substitutes

- Demand is more elastic ($|\varepsilon|$ is larger) if close substitutes for a good are available.
- Examples of goods with close substitutes:
- Examples of goods without close substitutes:

What determines ε ?
 Time to respond

- Demand is more elastic ($|\varepsilon|$ is larger) the more time consumers have had to anticipate and adjust to a price change.
- Examples where consumers have little time to respond to a price change:
- Examples where consumers have ample time to respond to a price change:

Extreme case:
 perfectly inelastic demand

- $\varepsilon=\frac{\% \operatorname{chg} Q}{\% \operatorname{chg} P}=0$.
- A price increase or decrease does not change quantity demanded.

THE PRICE ELASTICITY OF DEMAND

Page 3

Spending (= revenue) and the demand curve

- Spending $=\mathrm{P} \times \mathrm{Q}$
- Spending $=$ area of rectangle whose upper right corner just touches the demand curve.

Changes in spending

- Spending $=\mathrm{P} \times \mathrm{Q}$.
- For small \% changes in P and Q , this approximation holds:
- $\%$ chg in spending $=$ $(\%$ chg in P$)+(\%$ chg in Q$)$
- Example: If P increases by 1% and Q decreases by 3%, then spending \qquad creases by \qquad \%

Effect of price increase on spending when demand is elastic

- \% decrease in Q is
\qquad than
\% increase in P .
- Since spending
$=\mathrm{P} \times \mathrm{Q}$,
it \qquad .

Effect of price increase on spending depends on elasticity $=\frac{\% \operatorname{chg} Q}{\% \operatorname{chg} P}$

- If $|\varepsilon|>1$ ("elastic demand"), the \% decrease in Q is larger than the $\%$ increase in P , so spending \qquad .
- If $|\varepsilon|<1$ ("inelastic demand"), the $\%$ decrease in Q is smaller than the \% increase in P , so spending \qquad .

Effect of price increase on spending when demand is inelastic

- \% decrease in Q is
\qquad than \% increase in P .
- Since spending $=\mathrm{P} \times \mathrm{Q}$, it \qquad -.

THE PRICE ELASTICITY OF DEMAND

Page 4

Effect of price increase on spending

 when demand is unitary-elastic ${ }_{\text {Spending }}$- Any change in P is matched by an \% change in Q in opposite direction.
- Since spending $=\mathrm{P} \times \mathrm{Q}$, it \qquad -

Conclusions

- The price elasticity of demand (ε) is the change in quantity demanded, divided by the \qquad change in price.
- Its value depends on the availability of
, , the share of the good in consumers' budgets, and the time frame.
- Elastic demand means $|\varepsilon|$ \qquad 1.
- Inelastic demand means $|\varepsilon|$ \qquad 1.

CALCULATING ELASTICITIES

Page 1

CALCULATING ELASTICITIES

- How can we calculate the value of an elasticity from data?

Alternative formulas for the price elasticity of demand
Price elasticity of demand $=\varepsilon$

$$
\begin{aligned}
& =\frac{\% \text { change in quantity }}{\% \text { change in price }} \\
& =\frac{\Delta Q / Q}{\Delta P / P} \\
& =\frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q}
\end{aligned}
$$

Computing elasticities at a point

- Given a particular demand curve, the elasticity can be computed at any point if the slope at that point is known.
- Just use the formula:

$$
\varepsilon=\frac{\Delta Q / Q}{\Delta P / P}=\frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q}
$$

Computing elasticities at a point: example

- What is the elasticity when $\mathrm{P}=\$ 8$?
- $\varepsilon=(\Delta \mathrm{Q} / \Delta \mathrm{P})(\mathrm{P} / \mathrm{Q})$.
- Now $\Delta \mathrm{Q} / \Delta \mathrm{P}=$ reciprocal of slope, which is -0.01
- When $\mathrm{P}=\$ 8, \mathrm{Q}=200$.
- So $\varepsilon=(1 /-0.01)(8 / 200)$

Computing elasticities at a point: example

- What is the elasticity when $\mathrm{P}=\$ 8$?
- $\varepsilon=(\Delta \mathrm{Q} / \Delta \mathrm{P})(\mathrm{P} / \mathrm{Q})$.
- Now $\Delta \mathrm{Q} / \Delta \mathrm{P}=$ reciprocal of slope, which is \qquad .
- When $\mathrm{P}=\$ 8, \mathrm{Q}=200$.
- $\mathrm{So} \varepsilon=(1 /-0.01)(8 / 200)$ = \qquad -

Computing elasticities at a point: another example

- What is the elasticity when $\mathrm{P}=\$ 5$?
- $\varepsilon=(\Delta \mathrm{Q} / \Delta \mathrm{P})(\mathrm{P} / \mathrm{Q})$.
- Again $\Delta \mathrm{P} / \Delta \mathrm{Q}=$ \qquad
- When $\mathrm{P}=\$ 5, \mathrm{Q}=500$.
- $\mathrm{So} \varepsilon=(1 /-0.01)(5 / 500)$ = \qquad -.

CALCULATING ELASTICITIES

Page 2

Computing elasticities at a point: another example

- What is the elasticity when $\mathrm{P}=\$ 5$?
- $\varepsilon=(\Delta \mathrm{Q} / \Delta \mathrm{P})(\mathrm{P} / \mathrm{Q})$.
- Again $\Delta \mathrm{P} / \Delta \mathrm{Q}=\underline{-0.01}$.
- When $\mathrm{P}=\$ 5, \mathrm{Q}=500$.
- So $\varepsilon=(1 /-0.01)(5 / 500)$
= \qquad -.

A straight-line demand curve has changing elasticity

- Along a straight line, the slope $(\Delta \mathrm{P} / \Delta \mathrm{Q})$ and its reciprocal $(\Delta Q / \Delta P)$ are constant.
- But P and Q change, so elasticity value is
\qquad constant.

Elasticities near the intercepts

- $\varepsilon=(\Delta \mathrm{Q} / \Delta \mathrm{P})(\mathrm{P} / \mathrm{Q})$.
- Near the price axis, Q approaches zero, so ε approaches
- Near the quantity axis, P approaches zero, so ε approaches

Computing elasticities over an interval

- In many situations, may not have a complete graph or equation for demand curve.
- Might only have a couple of points.
- Example: test marketing.

If a demand curve has constant elasticity, it cannot be straight

- For example, this curve has a constant price-elasticity of demand $=$ throughout.

The "arc-elasticity" formula

- To compute elasticities over an interval between two points, it is conventional to use this formula:
$=\frac{\% \text { change in quantity }}{\% \text { change in price }}=\frac{\Delta Q / Q_{a v g}}{\Delta P / P_{\text {avg }}}$
- Note this formula computes both percent changes using \qquad method.

CALCULATING ELASTICITIES

Page 3

Conclusions

- Elasticity at any point on a demand curve can be computed using slope and coordinates at that point: $(\Delta \mathrm{Q} / \Delta \mathrm{P})(\mathrm{P} / \mathrm{Q})$.
- Straight demand curves have constant slope but do
\qquad have constant elasticity.
- Elasticity over an interval between two points can be computed as ratio of percent changes computed by \qquad method. This is called the

CROSS-PRICE ELASTICITY OF DEMAND

- What is the cross-price elasticity of demand?
- What does its value reveal?

The elasticity concept has many applications

- Recall: An elasticity is the ratio of percent changes between any two related variables.
- The elasticity of Y with respect to X is given by:

$$
\frac{\% \text { change in } \mathrm{Y}}{\% \text { change in } \mathrm{X}}=\frac{\Delta Y / Y}{\Delta X / X}
$$

- The elasticity concept can be used to measure the sensitivity of quantity demanded to any other variable.

Other variables affecting the quantity demanded

- The quantity demanded also depends on:
- prices of related goods.
- income of consumers.
- etc.
- When these variables change, the demand curve shifts.

Other demand elasticities

- Elasticities can be defined with respect to these other factors, too.
- Thus, these other elasticities measure the "shift-sensitivity" of the demand curve to changes in these
 variables.

Cross-price elasticity of demand: definition

- The cross-price elasticity of demand is defined by:

$$
\alpha=\frac{\% \text { change } Q}{\% \text { change } P_{\text {other }}}=\frac{\Delta Q / Q}{\Delta P / P_{\text {other }}}
$$

where $\mathrm{P}_{\text {other }}=$ price of a related good.

- Can be positive or negative.

What the sign of the cross-price elasticity of demand reveals

- If $\alpha>0$, then any change in $\mathrm{P}_{\text {other }}$ leads to a change in Q demanded of the
\qquad sign.
- The related good is a \qquad
- Example: hotdogs
 and hamburgers.

CROSS-PRICE ELASTICITY OF DEMAND
Page 2

What the sign of the cross-price elasticity of demand reveals (cont'd)

- If $\alpha<0$, then any change in $\mathrm{P}_{\text {other }}$ leads to a change in Q demanded of the
\qquad sign.
- The related good is a \qquad .
- Example: mustard
 and hotdogs.

Guessing the sign of $\frac{\% \text { change } Q}{\% \text { change } P_{\text {other }}}$

Q	$\mathbf{P}_{\text {other }}$	Substitutes or complements?	Sign of cross- price elasticity
Ink cartridges	Printers		
Frozen yogurt	Ice cream		
Salsa	Chips		
Burgers	Fries		
Electric vehicles	Gasoline		

Some estimates of cross-price elasticities of demand

- Elasticity of demand for butter with respect to price of margarine $=\mathbf{1 . 5 3}$
- Elasticity of demand for electricity with respect to price of natural gas $=\mathbf{0 . 5 0}$
- Elasticity of demand for coffee with respect to price of tea $=\mathbf{0 . 1 5}$
- Are these examples of substitutes or complements?

Source: Reported in Nicholson, Microeconomic Theory: Basic Principles and Extensions, 6th edition, Dryden, 1995, p. 219, table 7.3.

Using the cross-price elasticity

 (cont'd)- Substitute:
- $\ldots=\frac{\% \text { change } Q}{\% \text { change } P_{\text {other }}}=\frac{\% \text { change } Q}{}$
- Cross-multiply to find \% change in quantity demanded of electricity $=$ \qquad $\%$, an
- What happens to the quantity demanded of

Using the cross-price elasticity

- Suppose cross-price elasticity of demand for electricity with respect to natural gas $=0.5$.
- Suppose the price of natural gas increases by 6 percent. electricity? \qquad -.

CROSS-PRICE ELASTICITY OF DEMAND

Page 3

INCOME ELASTICITY OF DEMAND

- What is the income elasticity of demand?
- What does its value reveal?

Income elasticity of demand: definition

- The income elasticity of demand is defined by:

$$
\eta=\frac{\% \text { change } Q}{\% \text { change } I}=\frac{\Delta Q / Q}{\Delta P / I}
$$

where $\mathrm{I}=$ consumers' income.

- Typical value of η is about 1 .

What the sign of the income elasticity of demand reveals

- If $\eta>0$, then any change in income leads to an change in Q demanded of the \qquad sign.
- This is a \qquad good (usual case).
- Example: cars.

What the sign of the income elasticity of demand reveals (cont'd)

- If $\eta<0$, then any change in income leads to an change in Q demanded of the \qquad sign.
- This is an \qquad good (rare).
- Example: second-

Some estimates of income elasticities of demand

- Food:
0.28
- Medical services: 0.22
- Electricity: 0.61
- Automobiles: 3.00
- Beer: 0.38
- Wine: 0.97
- Cigarettes: 0.50

Source: Reported in Nicholson, Microeconomic Theory: Basic Principles and Extensions, 6th edition, Dryden, 1995, p. 219, table 7.3.

Are these examples of normal goods or inferior goods?

INCOME ELASTICITY OF DEMAND
Page 2

"Luxury" or "superior" goods

- If $\eta>1$, an increase in I causes an even larger increase in Q , and therefore an
\qquad in S .
- Rich people spend a \qquad share of their income on the good than poor people.
- Examples: \qquad .

"Necessary" goods

- If $\eta<1$, but still positive, an increase in I causes a smaller increase in Q , and therefore a \qquad in S.
- Rich people spend a \qquad share of their income on the good than poor people.
- Examples: \qquad .

Necessary good or luxury good?

Good	Budget share, low income	Budget share, high income	Necessary good or luxury good?
Food	16%	11%	
Housing	42%	30%	
New cars	0.8%	4.0%	
Healthcare	10%	7%	
Entertain- ment	4.5%	6.2%	
Tobacco	1.1%	0.2%	
Alcohol	0.7%	1.0%	

Some estimates of income

 elasticities of demand, revisited- Food:
0.28
- Medical services: 0.22
- Electricity: 0.61
- Automobiles: 3.00
- Beer:
0.38
- Wine:
0.97
- Cigarettes:

Source: Reported in Nicholson, Microeconomic Theory: Basic Principles and Extensions, 6th edition, Dryden, 1995, p. 219, table 7.3.

INCOME ELASTICITY OF DEMAND

Page 3

Using the income elasticity

- Suppose income elasticity of demand for beer $=0.4$.
- Suppose income increases by 5 percent.
- What happens to the quantity demanded of beer?

Using the income elasticity
 (cont'd)

- Substitute:
-____ $=\frac{\% \text { change } Q}{\%_{\text {change } I}}=\frac{\% \text { change } Q}{}$
- Cross-multiply to find $\%$ change in quantity demanded of beer $=$ \qquad $\%$, an
\qquad -

Conclusions

- The income elasticity of demand measures the sensitivity of demand to the consumer's income.
- The income elasticity is
\qquad for normal goods, for inferior goods (rare).
- Normal goods include luxury goods ($\left.\begin{array}{l}\eta \\ 1\end{array}\right)$ and necessary goods (η 1).

THE PRICE ELASTICITY OF SUPPLY
Page 1

THE PRICE ELASTICITY OF SUPPLY

- What is the price elasticity of supply?
- What does its value reveal?

The elasticity concept has many applications

- Recall: elasticity is ratio of percent changes between any two related variables.
- Elasticity of Y with respect to X is

$$
\frac{\% \text { change } Y}{\% \text { change } X}=\frac{\Delta Y / Y}{\Delta X / X}
$$

- In principle, elasticity concept can be used to measure sensitivity of any variable to any other variable.

Price elasticity of supply: definition

- The price elasticity of supply is defined by $\beta=\frac{\% \text { change } Q}{\% \text { change } P}=\frac{\Delta Q / Q}{\Delta P / P}$.
where changes are measured along the
\qquad
- By the "Law of Supply," β must be 0

0.

What the value of β means

- If Q is very sensitive to P,
- then β is \qquad .
- say "supply is more elastic."
P \uparrow

If Q is not very sensitive to P ,

- then β is \qquad .
- say "supply is less elastic."

What determines β ?

Supply is more elastic (β is larger):

- if inputs required in production have lots of other uses. Example: \qquad -
\qquad
- if producers have lots of time to anticipate and adjust to price changes. Example: \qquad
- Example: \qquad
- $\beta=$ infinity.
- even the smallest price decrease reduces quantity supplied to zero.

Extreme case:

perfectly elastic supply
\qquad

THE PRICE ELASTICITY OF SUPPLY

Page 2

Conclusions

- The price elasticity of supply is the percent change in quantity supplied, divided by the percent change in price.
- It is \qquad if the inputs required to produce the good are freely available and have many alternative uses, and if producers have \qquad to adjust to price changes.

Some estimates of long-run elasticities of supply

- Corn: 0.27
- Wheat: 0.03
- Aluminum: nearly infinite
- Coal (eastern US): 15.
- Natural gas (US) 0.50

USING PRICE ELASTICITIES

- How can we use elasticity values to predict the effect of market changes?

Predictions

- We already know how to make rough qualitative predictions of the effects of market changes.
- We know that if supply shifts left, P rises and Q falls.

Exact predictions

- But how much does P rise and Q fall?
- The same supply shift could have very different consequences.
- To make quantitative predictions, we need to know how steep the
 curves are.

Using price elasticity of demand

- Recall: price elasticity of demand $=\varepsilon=$

$$
\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{\Delta Q / Q}{\Delta P / P}
$$

measured along the demand curve.

- If we know ε, and either the $\%$ change in Q
or the $\%$ change in P , we can compute the

If we know ε, and either the $\%$ change in Q
or the $\%$ change in P , we can compute the other quantity.
$\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{\Delta Q / Q}{\Delta P / P}$

Movements along curves

- Using elasticity values, we can make exact quantitative predictions.
- We now consider how to use \qquad elasticities to compute
- movements along the demand curve.
- movements along the supply curve.

Using price elasticity of demand:

 cable TV rates- Suppose the price elasticity of demand for cable TV service is -1.2 and rates drop by 5%.
- We know the number of customers will increase, but by how much?
- Given: $-1.2=\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{\% \text { change in } \mathrm{Q}}{-5 \%}$
- So number \qquad creases by \qquad \%.

Using price elasticity of demand: cable TV rates (cont'd)

- What will happen to cable TV company revenue?

- Since Revenue $=\mathrm{P} \times \mathrm{Q}$, approximately

$$
\binom{\% \text { change }}{\text { in Revenue }}=\binom{\% \text { change }}{\text { in } \mathrm{P}}+\binom{\% \text { change }}{\text { in } \mathrm{Q}}
$$

- Then revenue \qquad creases by \qquad \%.

Using price elasticity of demand: supply shifts in agriculture (cont'd)

- Suppose $\varepsilon=-2 / 3$ and bad weather causes equilibrium quantity to drop by 10%.
- We know the price will increase, but by how much?
- Given: $-2 / 3=\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{-10 \%}{\% \text { change in } \mathrm{P}}$
- So price \qquad creases by \qquad \%.

Using price elasticity of supply

- Recall: price elasticity of supply $=\beta=$

$$
\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{\Delta Q / Q}{\Delta P / P}
$$

measured along the supply curve.

- If we know β, and either the $\%$ change in Q or the $\%$ change in P , we can compute the other quantity.

Using price elasticity of demand: supply shifts in agriculture

- Supply shifts are common in agriculture because of variations in weather, pests, etc.
- Demand for most crops is inelastic: $|\varepsilon|<1$.
- So quantity changes are \qquad (in \%) than price changes.

Using price elasticity of demand: supply shifts in agriculture (cont'd)

- What will happen to farmers' revenue?
- Recall:
$\binom{\%$ change }{ in Revenue }$=\binom{\%$ change }{ in $P}+\binom{\%$ change }{ in $Q}$
- Therefore in this example, farmer's revenue
\qquad creases by \qquad \%

Using price elasticity of supply: natural gas prices

- Suppose the price elasticity of supply for natural gas is 0.5 and the price is expected to increase by 8%.
- We know the amount of natural gas produced will increase, but by how much?
- Given: $0.5=\frac{\% \text { change in } \mathrm{Q}}{\% \text { change in } \mathrm{P}}=\frac{\% \text { change in } \mathrm{Q}}{8 \%}$
- So quantity \qquad creases by \qquad $\%$.

USING PRICE ELASTICITIES

Page 3

Using price elasticity of supply: natural gas (cont'd)

- What will happen to revenue of natural gas producers?
- Since Revenue $=P \times Q$, approximately $\binom{\%$ change }{ in Revenue }$=\binom{\%$ change }{ in $P}+\binom{\%$ change }{ in $Q}$
- Then revenue \qquad creases by \qquad \%.

Conclusions

- Price elasticities can be used to compute exact predictions of the effect of price changes on the \qquad demanded or supplied.
- If we know the elasticity and either the change or the \qquad change, we can compute the remaining number.
- We can also compute the change in _ (or spending).

EFFECTS OF INTERNATIONAL TRADE

- How does international trade affect individual markets?
- Who wins and who loses?

Consumption versus production

- With international trade, the amount a country consumes of a particular good need not equal the amount it produces.
- A country can consume more than it produces if it \qquad the difference.
- A country can consume less than it produces if it \qquad the difference.

Price is set by combined market

Where do the combined demand and supply curves come from?

- Quantity demanded in combined market = sum of \qquad demanded by all countries.
- Quantity supplied in combined market = sum of \qquad supplied by all countries.
- A single price holds for all countries.

Example: equilibrium without international trade

$\left.$| Price | Country A | | Country B | |
| :---: | :---: | :---: | :---: | :---: |
| Quantity | | | | |
| demanded | | | | | | Quantity |
| :---: |
| supplied | | Quantity |
| :---: |
demanded		Quantity			
supplied	\right\rvert\,	$\$ 1$	50	30	45
:---:	:---:	:---:	:---:		
$\$ 2$	40	40	40		
$\$ 3$	30	50	35		
$\$ 4$	20	60	30		
$\$ 5$	10	70	25		
$\$ 6$	0	80	20		

EFFECTS OF INTERNATIONAL TRADE

Page 2

Example: equilibrium with international trade						
	Cour		Cou		Comb	
P	Q_{D}	$\mathrm{Q}_{\text {S }}$	Q_{D}	Q_{S}	Q_{D}	Q_{S}
\$1	50	30	45	5		
\$2	40	40	40	10		
\$3	30	50	35	15		
\$4	20	60	30	20		
\$5	10	70	25	25		
\$6	0	80	20	30		

Example: imports and exports

- At the international price of $\$ 3$,
- Country A demands 30 and supplies 50, so Country A \qquad .
- Country B demands 35 and supplies 15, so Country B \qquad .

Why is international trade controversial? Reason \#1

- International trade creates winners and losers in each country.
- When the price goes up, \qquad lose and \qquad win.
- When the price goes down, \qquad win and \qquad lose.

Example: winners and losers

- In Country A, the price rose from $\$ 2$ to \$ \qquad , so consumers are \qquad and producers are \qquad .
- In Country B, the price fell from $\$ 5$ to \$ \qquad , so consumers are \qquad and producers are \qquad .
- There were winners and losers in each country.

Why is international trade controversial? Reason \#2

- With international trade, the equilibrium price depends on the combined demands and supplies of \qquad trading countries.
- So, if demand or supply shifts in any country, the equilibrium price will change for \qquad countries.

Effects of rightward shift in

foreign demand

EFFECTS OF INTERNATIONAL TRADE
Page 3

Conclusions

- International trade \qquad markets.
- The same price (or nearly the same price) now prevails everywhere.
- International trade creates winners and losers in \qquad country.
- Shifts in demand or supply in one country now affect price \qquad -.

ECONOMIC EFFICIENCY AND WELFARE ANALYSIS

- How can we measure gains and losses from changes in the economy?

Economics and public policy

- An important application of economics is deciding whether government policies are worthwhile.
- Welfare economics $=$ branch of economics that tries to quantify the benefits and costs of government policies, and other changes in the economy.

"Win-win" changes

- Occasionally, a policy or other change in the economy creates one or more winners and \qquad losers.
- A change that creates at least one winner and \qquad losers is called a Pareto improvement.*

Example of a Pareto improvement

- Suppose at a particular intersection, cars initially are not permitted to turn right while traffic light is red.
- Then rule is changed so that cars may turn right on red. Assuming no safety issues...
- Drivers wanting to turn right \qquad .
- Other drivers \qquad .

"Win-lose" changes

- Unfortunately, most changes in the economy create \qquad winners and losers.
- Example: The invention of radial tires, which last several times as long as older designs, reduced employment in the U.S. tire industry by an estimated 40%.

Deciding on "win-lose" changes

- If a proposed government policy creates both winners and losers, how can we decide whether it should be done?
- This is a problem in \qquad economics.
- Economists in the 1930s proposed a conceptually simple test.

The compensation test of Kaldor and Hicks

- If the gains to the winners are greater than the losses to the losers, the change is said to pass the compensation test.
- In principle, winners could potentially compensate losers and still come out ahead.
- In practice, winners rarely do so.

Example of potential Pareto improvement

- Suppose a government program benefits farmers by $\$ 5$ billion but costs taxpayers $\$ 3$ billion.
- This program \qquad the compensation test.
- It is also called a \qquad Pareto improvement (even if farmers do not actually compensate taxpayers).

Pareto improvements versus potential Pareto improvements

- Venn diagram

All economic changes

Calculating gains and losses

- To add up gains and losses, they must be in the same units.
- Conventionally, economists use \qquad (or some other currency).
- Often, gains and losses occur through changes in prices.
- Gains and losses are then measured as changes in consumer or producer \qquad .

Economic efficiency

- If a policy or other change creates a net gain or benefit for society, it is said to
\qquad economic efficiency.
- If a policy or other change creates a net loss for society, it is said to economic efficiency.
- The amount of net social loss is sometimes called the "deadweight loss."

Criticisms of the compensation test: What about the losers?

- In practice, winners rarely compensate losers.
- If you feel the losers are much more deserving than the winners, you might \qquad ${ }^{\text {a }}$ policy that passes the compensation test.
- For example, if you feel that tire workers are more deserving than tire consumers, you might
\qquad banning radial tires.

But consistent use of the compensation test might spread losses around

- If the compensation test is applied to many policy decisions, will benefit at least some of the time.
- For example, tire workers are also consumers of garments and peanuts.
- If we stick to the compensation test for all decisions, maybe \qquad can be a net winner overall.

Does the compensation test always give the right answer?

- Should we add up gains and losses without regard to who gets them?
- This is a \qquad question.
- Yes, if you feel that ...
- No, if you feel that ...
\qquad $-$

Criticisms of the compensation test:

 Efficiency versus equity- Sometimes an increase in economic efficiency brings a decrease in
\qquad (equality, fairness).
- For example, suppose a policy makes rich people better off by $\$ 2$ billion and makes poor people worse off by $\$ 1$ billion.
- Passes compensation test but makes society less equal.

Conclusions

- A change where at least one person gains and no one loses is called a \qquad improvement.
- A change where the gains to the winners are greater than the losses to the losers passes the \qquad —, is a \qquad Pareto improvement, and increases economic \qquad -.

WELFARE ANALYSIS OF INTERNATIONAL TRADE

- How can we quantify the welfare effects of international trade?
- Do the gains to the winners exceed the losses to the losers?

International trade: review

- International trade merges markets in different countries.
- The amount a country consumes of a particular good need no longer equal the amount it produces.
- Price is determined by the intersection of supply and demand, not supply and demand in any one country.

Effects of international trade on domestic markets

- World price can be either above or below domestic price without international trade.
- If above, then the country's \qquad lose from trade and its \qquad win.
- If below, then the country's \qquad lose from trade and its \qquad win.
- But how do the gains to the winners compare with the losses to the losers?

World price $>$ domestic price:

 effect on domestic producers- Producers sell more units at a higher price.
- Producer surplus increases by the area of the large trapezoid.

What happens if world price is

 above domestic price- Price rises from P^{*} to P_{W}.
- Domestic producers now sell Q_{S}.
- Domestic consumers buy only Q_{D}.
- Difference is

World price $>$ domestic price:

 effect on domestic consumers- Consumers buy fewer units at a higher price.
- Consumer surplus decreases by the area of the small trapezoid.

WELFARE ANALYSIS OF INTERNATIONAL TRADE
Page 2

World price > domestic price: net gain for society

- Gain to producers is greater than loss to consumers by the amount of the top triangle.
- Net gain to country from international trade is \qquad .

- Suppose $\mathrm{P}_{\mathrm{w}}=\$ 6$.
- PS increases by \$ \qquad .
- CS decreases by \$
- Net gain to whole country = \$ \qquad Example: world price > domestic price

What happens if world price is

 below domestic price- Price falls from P^{*} to P_{W}.
- Domestic consumers now buy Q_{D}.
- Domestic producers sell only Q_{S}.
- Difference is
\qquad .

World price $<$ domestic price: effect on domestic producers

- Producers sell fewer units at a lower price.
- Producer surplus decreases by the area of the small trapezoid.

World price $<$ domestic price:

 net gain for society- Gain to consumers is greater than loss to producers by the amount of the bottom triangle.
- Net gain to country from international trade is \qquad .

WELFARE ANALYSIS OF INTERNATIONAL TRADE Page 3

Example:

world price < domestic price

- Suppose $\mathrm{P}_{\mathrm{W}}=\$ 3$.
- CS increases by \$
- PS decreases by \$
- Net gain to whole country $=\$$ \qquad

Why economists generally support free international trade

- Whether the world price is above or below the domestic price determines who wins and who loses from international trade.
- But the gains to winners must always
\qquad
- Therefore net gain to country from international trade is \qquad
- International trade passes the test.

Conclusions

- International trade creates winners and losers in every country.
- If the price rises, PS \qquad and CS \qquad .
- If the price falls, PS \qquad and CS \qquad .
- However, the gains to the winners always
\qquad the losses to the losers.
- Net gain to country from international trade is \qquad -

ARBITRAGE

Page 1

What is arbitrage?

- Arbitrage = buying a good at a place where its price is \qquad and reselling it where its price is \qquad , to make money.
- Opportunities for arbitrage exist if:
- there exists a price difference between two places.
- costs of arbitrage are \qquad than that price difference.

Costs of arbitrage

- Costs of finding out prices in other places and locating buyers and sellers.
- Costs of transporting goods.
- Some goods are cheap to move:
- Some goods are expensive to move:

Who can engage in arbitrage?

- In free-market economies, anyone.
- Producers arbitrage by redirecting their output to different markets.
- Some people have full-time jobs arbitraging financial markets (stocks, bonds, foreign currency, etc.).

How does arbitrage affect markets?

- Arbitrageurs always buy \qquad and sell
\qquad -.
- Arbitraging tends to reduce price differentials between markets, although arbitrageurs don't want this to happen.
- In equilibrium, there are \qquad _ arbitrage opportunities.

How arbitrage works

- Demand is increased in the low-priced location.
- Supply is increased in the high-priced location by same amount.
- Price differential is reduced.

ARBITRAGE

Page 2

Limits to arbitrage if there are no costs of arbitrage

- Arbitrage will continue until prices are equal in both locations.
- Locations become one big market, obeying the "law of one price."
- Examples of goods with negligible costs of arbitrage:
\qquad

Example: if there are arbitrage opportunities, then market is out of equilibrium

Suppose

- price of pumpkins in Des Moines $=\$ 3$.

- cost of shipping pumpkins between Des Moines and Chicago $=\$ 1.50$.

Price of pumpkins in Chicago	Are there arbitrage opportunitics?	Is market in or out of oquilbrium?
$\$ 1$		
$\$ 2$		
$\$ 3$		
$\$ 4$		
$\$ 5$		

Who wins and who loses from arbitrage (other than the arbitrageurs)?

- Winners are:
 in location where price rises,
- \qquad in location price falls.
- Losers are:
\qquad in location where price falls,
\qquad in location where price rises.

Limits to arbitrage if arbitrage is costly

- Arbitrage will continue until the price differential falls below the cost of arbitrage.
- So in equilibrium, prices at two locations cannot differ by more than the cost of arbitrage.
- Examples of goods with high costs of arbitrage:
\qquad
\qquad

Equilibrium = no more arbitrage opportunities

- Suppose tomatoes are selling for $\$ 1$ per pound in Des Moines and it costs $\$ 0.40$ per pound to ship tomatoes between Des Moines and Minneapolis.
- In equilibrium, the price in Minneapolis must be between
\qquad and \qquad .

Conclusions

- Arbitrageurs buy in one location for resale in another.
- The unintended effect of arbitrage is to locations.
- In equilibrium, price differentials are
the cost of arbitrage.

PRICE CONTROLS
Page 1

What are price controls?

- Price floor $=$ minimum price $=$ price below which a good may not legally be traded.
- Price ceiling $=$ maximum price $=$ price above which a good may not legally be traded.

Binding versus nonbinding price controls

- Not all price control laws have an effect on the market.
- A price control is binding if it actually prevents the price from reaching market equilibrium.
- A nonbinding price control has \qquad effect.

Nonbinding price controls

- A price ceiling above the market equilibrium price is not binding.
- A price floor below the market equilibrium price is not binding.
- Henceforth, we consider only binding price controls.

How a price floor works

- A price floor creates permanent excess
- Some suppliers are not able to sell all they want at the legal minimum price.

Effect of price floor on quantity

 traded- Quantity actually traded is \qquad than equilibrium quantity.

Example of a price floor

- Suppose in this market, a price floor of $\$ 4$ is imposed.
- Excess supply = million gallons.
- Quantity actually traded = \qquad million gallons.

Example of price floor: agricultural price supports

- Agricultural price supports are not legal minimum prices, but rather price targets set by the government.
- To keep prices high, the government must either:
- increase demand (by buying and destroying output).
- reduce supply (by paying farmers to grow less and/or excluding foreign suppliers).

Who gains and who loses from a price floor?

- Buyers all \qquad because they pay a higher price than they would otherwise.
- Sellers who get into the market \qquad because they receive a higher price than they would otherwise.
- However, some sellers are excluded (or at least sell less than they would otherwise). They \qquad -.

Example of price floor: minimum wages

- Minimum wage laws are simple legal minimum prices, not enforced by supply or demand intervention.
- If binding, they contribute to unemployment.
- However, U.S. min. wage laws are probably binding on only a small fraction of the labor force-mostly young unskilled workers.

SOURCE: https://www.dol.gov/general/topic/wages/minimumwage

Federal minimum wage as percent of average manufacturing wage

SOURCE: www.bls.gov, data series CEU3000000008

PRICE CONTROLS

Page 3

Other examples of price floors

- Airlines and trucking before federal deregulation in 1980.
- Prices were kept well above equilibrium by federal regulatory agencies.
- Excess supply was controlled by regulating entry of new firms, as well as regulating prices.

How a price ceiling works

- A price ceiling creates permanent excess
- Some demanders are not able to buy all they want at the legal maximum price.

Effect of price ceiling on quantity traded

- Quantity actually traded is \qquad than equilibrium quantity.

Who gains and who loses from a price ceiling?

- Sellers all \qquad because they receive a lower price than they would otherwise.
- Buyers who get into the market \qquad because they pay a lower price than they would otherwise.
- However, some buyers are excluded (or at least buy less than they would otherwise). They \qquad -.

Example of price ceiling: usury laws

- Usury laws restrict the rate of interest that can be charged on loans.
- Once widespread in U.S.
- Binding if market interest rate $>$ ceiling.
- Generate "credit crunches" if bindingbecomes very difficult to borrow.
- Still binding on persons with little credit or collateral. Why?

PRICE CONTROLS

Page 4

More examples of price ceiling

- General price controls imposed by President Nixon from August 1971 to April 1974 to restrain inflation.
- Price controls on petroleum lasted till January 1981 (lifted by President Reagan).

Example of price ceiling: rent control

- Rent control ordinances restrict rents that can be charged for apartments.
- Some cities have rent controls that are not probably not binding.
- New York City has strong, binding, rent control ordinance dating from World War II.

Rent control reduces quantity of housing more in the long run than short run

- Short-run supply of housing is nearly perfectly inelastic.
- Response is slow.
- Long-run supply of housing is more elastic.

Other examples of price ceilings

- Food prices in some developing countries.
- Create excess \qquad for food, unless demand is restrained by rationing or supply is boosted by subsidies.

Conclusions

- Price controls keep price away from its equilibrium level and \qquad the quantity traded in a market.
- Buyers all \qquad from a price floor, but sellers who can still get into the market win.
- Sellers all \qquad from a price ceiling, but buyers who can still get into the market win.

QUOTAS

Page 1

- What happens when a market is subject to a quota?
- Who wins and who loses?

What is a quota?

- A legal restriction specifying the maximum quantity that may be bought or sold in a market.
- Usually administered by giving buyers or sellers permits to buy or sell specified amounts of the good.
- Sometimes buyers or sellers must buy permits or bid for them in an auction.

How a quota on SELLERS works

- If quota is binding, some suppliers are not able to sell all they want.
- Quantity traded is than equilibrium quantity.

Example of a quota on sellers

- Suppose in this market, a quota of 40 million is imposed on sellers.
- Equilibrium price is \$ \qquad $-$.

Who gains and who loses from a quota on sellers?

- Buyers all \qquad because they pay a higher price than they would otherwise.
- Sellers who are given quotas \qquad because they receive a higher price than they would otherwise.
- If sellers must pay for quotas (e.g., by bidding at an auction) then they do not gain.
- In any case, some sellers are excluded (or at least sell less than otherwise). They \qquad .

QUOTAS

Page 2

Examples of quotas on sellers: licensing

- Some licensing laws restrict the number of sellers.
- Sometimes this is explicit:
- Examples: \qquad
- Sometimes this may be implicit, disguised as a difficult licensing exam.
- Examples: \qquad

How a quota on buyers affects

 product price- The legal demand curve drops down vertically at Q_{Q}.
- Price is \qquad than equilibrium price (as in a price ceiling).

Who gains and who loses from a quota on buyers?

- Sellers all \qquad because they receive a lower price than they would otherwise.
- Buyers who are given quotas because they pay a lower price than they would otherwise.
- If buyers must pay for quotas (e.g., by bidding at an auction) then they do not gain.
- In any case, some buyers are excluded (or at least buy less than otherwise). They \qquad .

How a quota on BUYERS works

- If the quota is binding, some demanders are not able to buy all they want.
- Quantity traded is
\qquad
equilibrium quantity.

Example of a quota on buyers

- Suppose in this market, a quota of 20 million is imposed on buyers.
- Equilibrium price is \$ \qquad -.

Examples of quotas on buyers

- Rationing tickets for flour, sugar, gasoline and many other items during World War II.
- Explicit purpose was to keep prices low while diverting production to war effort.
- Gasoline rationing was proposed during oil embargo of 1970s, but never used.

QUOTAS

Page 3

Conclusions

- Quotas keep the quantity traded \qquad its equilibrium level and distort the market price.
- A quota on sellers \qquad the market price. Buyers all lose but sellers who can still trade win.
- A quota on buyers \qquad the market price. Sellers all lose but buyers who can still trade win.

Page 1

WELFARE ANALYSIS OF PRICE CONTROLS AND QUOTAS

- How can we measure the welfare effects of price controls or quotas?
- Do the gains to the winners exceed the losses to the losers?

Consumer and producer surplus under competition

- Under competition, price and quantity are determined by intersection of supply and demand.
- Consumer and producer surplus are triangles above and below price line.

Price floor (legal minimum price)

- A price floor creates permanent excess
- Some producers are not able to sell all they want at the legal minimum price.
- Quantity actually traded is equilibrium quantity.

Loss of consumer surplus from price floor

- Consumers face a higher price and buy fewer units.
- Loss of consumer surplus = area of trapezoid between new and old prices.

Page 2

Price floor may increase or decrease producer surplus

- Producers sell fewer units but enjoy a higher price on each unit they still sell.
- Producer surplus increases by area of rectangle, decreases by area of lower triangle.

Deadweight loss from a price floor

- Part of consumers' loss is producers' gain.
- But part of consumers' loss is no one's gain.
- And producers also lose something.
- Deadweight social loss is sum of areas of two triangles.

Summing gains and losses from a price floor

- Thus gains to producers from a price floor are less than losses to consumers.
- A price floor fails the
\qquad test.
- In other words, a price floor is not
\qquad -.

Example of price floor

- Suppose $\mathrm{P}_{\mathrm{F}}=\$ 6$.
- CS decreases by \$ \qquad
- PS increases by
\qquad $=\$$
- Deadweight loss $=$ \$ \qquad -.

Price ceiling (legal maximum price)

- A price ceiling creates permanent excess

Some consumers are not able to buy all they want at the legal maximum price.

- Quantity actually traded is equilibrium quantity.

WELFARE ANALYSIS OF PRICE CONTROLS AND QUOTAS

Page 3

Loss of producer surplus from price ceiling

- Producers face a lower price and sell fewer units.
- Loss of producer surplus = area of trapezoid between new and old prices.

Price ceiling may increase or decrease consumer surplus

- Consumers buy fewer units but enjoy a lower price on each unit they still buy.
- Consumer surplus increases by area of rectangle, decreases by area of upper triangle.

Summing gains and losses from a price ceiling

- Thus gains to consumers from a price ceiling are less than losses to producers.
- A price ceiling fails the
\qquad test.
- In other words, a price ceiling is not
\qquad -

WELFARE ANALYSIS OF PRICE CONTROLS AND QUOTAS

Page 4

Example of price ceiling

- Suppose $\mathrm{P}_{\mathrm{C}}=\$ 3$.
- PS decreases by \$ \qquad .
- CS increases by
\qquad
\qquad
\qquad -.
- Deadweight loss $=$ \$ \qquad -.

Quota on sellers

- Quota on sellers bends supply curve up vertically.
- Price is pushed up above equilibrium price.
- Effect is similar to price floor.

Quota on sellers may increase or

 decrease producer surplus- Consumers face a higher price and buy fewer units.
- Consumer surplus shrinks by area of trapezoid between new and old prices.

Summing gains and losses from a quota on sellers

- Thus gains to producers from a quota are less than losses to consumers.
- A quota on sellers fails the
test.
- In other words, a quota on sellers is not
\qquad .

WELFARE ANALYSIS OF PRICE CONTROLS AND QUOTAS
Page 5

- Price floors, price ceilings, and quotas all create \qquad .
- Gains to winners are less than losses to losers, so they all fail the \qquad test.
- In other words, they are never
\qquad -.

Conclusions

TAXES

Page 1

- What happens to a market when a good or service is taxed?
- Who bears the burden of the tax?

Taxes on market transactions

- Almost all taxes are applied to market transactions.
- Examples:
- Sales taxes.
- Hotel, restaurant, and other taxes.
- Payroll taxes.
- Income taxes.

Two basic kinds of taxes

- Unit tax: tax paid depends only on the number of units sold.
- Examples: \qquad .
- Ad valorem tax: tax paid is a percent of value of sales.
- Examples: \qquad .

Who pays the tax?

- Which party (buyer or seller) remits the tax to the government varies with the particular tax law.
- However, the party that remits the tax may or may not be the party that bears the greatest burden of the tax.

Tax as a wedge

- Any tax necessarily drives a wedge between:
- total amount the buyer pays, and
- net amount the seller receives (after tax is remitted to the government).

Two prices in the market

- Let $\mathrm{P}_{\mathrm{D}}=$ total price paid by buyers, including the tax.
- Let $P_{S}=$ net price received by sellers, excluding the tax.
- Whether the posted price is P_{D} or P_{S} varies with the particular tax. Examples:
- Posted price $=P_{S}$ for: \qquad
- Posted price $=P_{D}$ for: \qquad

TAXES

Page 2

How taxes affect behavior

- Buyers care only about the total price they must pay (P_{D}).
- Hence the demand curve in terms of P_{D} stays the same.
- Sellers care only about the net price they receive (P_{S}).
- Hence the supply curve in terms of P_{S} stays the same.

A tax is a wedge between P_{D} and P_{S}

- But $\mathrm{P}_{\mathrm{D}}>\mathrm{P}_{\mathrm{S}}$.
- Let tax = unit tax rate in dollars (e.g., \$0.20 per pack, $\$ 0.10$ per gallon, etc.)
- Then \square
- To graph tax, find quantity where demand curve is higher than supply curve by amount of tax.

Effect of tax on prices

- As a result of any tax:
P_{D} increases. P_{S} decreases.
- In equilibrium:
$\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\mathrm{S}}+$ tax .
$P_{D}>P^{*}>P_{S}$.

Effect of tax on quantity traded

- In equilibrium, quantity demanded $=$ quantity supplied.
- New equilibrium quantity < original equilibrium quantity.

Tax revenue collected by government

- Tax revenue collected:
$=\operatorname{tax} \times \mathrm{Q}_{\mathrm{t}}$.
$<\operatorname{tax} \times \mathrm{Q}^{*}$.

TAXES

Page 3

Example 1:
If tax rate is $\$ 3$, tax revenue $=\$$ \qquad .

Who pays the tax?

- As a result of the tax:
- Buyer's price P_{D} \qquad .
- Seller's price P_{S} \qquad .
- So \qquad buyers and sellers bear part of the burden of the tax, regardless of who is assigned to send the money to the government.
- But they do not share the burden equally.

Example 3: unequal tax burden

- Again suppose tax rate $=\$ 4$.
- Buyers' price increases by \$ \qquad .
- Sellers' price decreases by \$
- So
bear most of tax burden.

Example 4

- Suppose the elasticity of demand for beer is -0.2 and the elasticity of supply is 3.0 .
- Recall that the smaller the elasticity value, the \qquad the curve.
- So in this case, the \qquad curve is steeper.
- So \qquad of beer bear more of the tax burden.

TAXES

Page 4

How changes in tax rates affect tax revenues

- As the tax rate increases, the quantity traded decreases.
- So the tax revenue box can increase or decrease in area.
- A very high tax rate could wipe out a market, yielding no
 tax revenues at all!

Laffer curve

- Typically, as tax rates increase, tax revenues at first \qquad .
- But as tax rates are raised to very high levels, tax revenues may \qquad .
- Relationship between tax rate and tax revenue is called a "Laffer curve."

Finding a Laffer curve: example

Finding a Laffer curve: example (cont'd)

Laffer curves in the real world

- Most real-life tax rates are on the increasing portion of the Laffer curve.
- However, when U.S. income taxes were cut at the high end in the 1980s from 90% to 50% to 33%, tax revenues increased.

Conclusions

- A tax inserts a wedge between total price paid by demanders and net price received by suppliers: $\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\mathrm{S}}+$ \qquad -.
- In general, both sides of the market pay part of the tax, but the side with the \qquad (less elastic) curve pays more.
- The quantity traded always \qquad with a tax.
- If the tax rate rises high enough, tax revenues also begin to fall.

SUBSIDIES

Page 1

Subsidies on market transactions

- A subsidy is a negative tax:
- government pays either the buyer or the seller for each unit sold.
- Examples:
- Agricultural products.
- Vouchers for low-income housing.
- Proposed vouchers for private schools.

Who enjoys the subsidy?

- Which party (buyer or seller) receives the payment from the government varies with the particular program.
- However, the party that receives the payment may not be the party that enjoys the greatest benefit from the program.

Subsidy as wedge

- Any subsidy necessarily drives a wedge between
- total amount the seller receives, including the subsidy $\left(\mathrm{P}_{\mathrm{S}}\right)$, and
- net amount the buyer pays, not including the subsidy (P_{D}).

A subsidy is a wedge between P_{D} and P_{S}

- So $\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{S}}$.
- Let $s u b=$ dollar subsidy rate (e.g., $\$ 0.50$ per bushel of wheat, $\$ 1000$ per year of school tuition, etc.).
- Then

- To graph subsidy, find quantity where supply curve is higher than demand curve by amount of subsidy.

Example 1: graphing a subsidy Suppose subsidy is $\$ 3$ per unit

SUBSIDIES

Page 2

Effect of subsidy on prices

- As a result of any subsidy:
P_{D} decreases. P_{S} increases.
- In equilibrium: $P_{D}+$ sub $=P_{S}$. $\mathrm{P}_{\mathrm{D}}<\mathrm{P}^{*}<\mathrm{P}_{\mathrm{S}}$.

Effect of subsidy on quantity traded

- In equilibrium, quantity demanded $=$ quantity supplied.
- New equilibrium quantity $>$ original equilibrium quantity.

Direct cost of subsidy program to the government

- Direct cost of program = payments to buyers or sellers $=s u b \times \mathrm{Q}^{\mathrm{s}}$.
$>\operatorname{sub} \times \mathrm{Q}^{*}$.

Example 1: if subsidy rate is $\$ 3$ per unit, direct cost = \$

Who receives the subsidy?

- As a result of the subsidy:
- Buyer's price P_{D} \qquad .
- Seller's price P_{S} \qquad .
- So \qquad buyers and sellers enjoy the benefit of the subsidy, regardless of who receives payment from the government.
- However, they do not share the benefit equally.

Whichever side has the steeper (less elastic) curve enjoys \qquad of the subsidy

SUBSIDIES

Page 3

Example 2

- Suppose the elasticity of demand for books is -0.5 and the elasticity of supply is 4.0 .
- Now, the \qquad the elasticity value, the steeper the curve.
- So in this case, the \qquad curve is steeper.
- So \qquad of books enjoy more of the subsidy.

Conclusions

- A subsidy works like a negative tax.
- It inserts a wedge between net price paid by demanders and total price received by suppliers: $\mathrm{P}_{\mathrm{D}}{ }^{+}$ \qquad $=\mathrm{P}_{\mathrm{S}}$.
- In general, both sides enjoy part of the subsidy, but the side with the \qquad (less elastic) curve enjoys more of it.
- The quantity traded always \qquad with a subsidy.

WELFARE ANALYSIS OF TAXES AND SUBSIDIES

- Is the cost of a tax simply the amount paid to the government?
- Is the benefit from a subsidy program worth its cost to the government?

Consumer and producer surplus

 after the tax- New consumer surplus is the area between the demand curve and the horizontal line at P_{D}.
- New producer surplus is the area between the supply curve and the horizontal line at P_{S}.

Where the loss of consumer and producer surplus goes

- Tax revenue
$=$ tax rate $\times Q_{t}$
$=$ gain to government.
- Remainder of loss is deadweight social loss = sum of area of two triangles.
- "Deadweight loss" $=$ "excess burden of tax."

Tax

- For a unit (excise) tax, $P_{D}=P_{S}+$ tax.
- As a result of the tax:
- P_{D} increases
- P_{S} decreases.
- quantity decreases.

Tax reduces both consumer surplus and producer surplus

- Consumer surplus shrinks by the area of the upper trapezoid.
- Producer surplus shrinks by the area of the lower trapezoid.

Summing gains and losses

- Thus the loss to consumers and producers from a tax is \qquad than simply the tax revenues paid to the government.
- There is an additional deadweight social loss as \qquad units are produced.
- Surplus from trade on these units is lost because of the tax.

Page 2

Net loss from taxes

- Therefore there is a net loss to society from taxes...
- UNLESS government tax revenues are spent on valuable things...
- more valuable than what people spend their own money on.

Subsidy

- For a unit subsidy, $P_{D}+$ sub $=P_{S}$
- As a result of the subsidy:
- P_{D} decreases.
- P_{S} increases.
- quantity increases.

Example of tax

- Suppose tax $=\$ 3$.
- CS decreases by \$ \qquad
- PS decreases by \$ \qquad .
- Tax revenue = \$ \qquad .
- Deadweight loss = \$ \qquad .

Consumer surplus after the subsidy

- New consumer surplus is the area between the demand curve and the horizontal line at P_{D}.

Producer surplus after the subsidy

- New producer surplus is the area between the supply curve and the horizontal line at P_{S}.

Subsidy increases both consumer surplus and producer surplus

- Producer surplus increases by the area of the upper trapezoid.
- Consumer surplus increases by the area of the lower trapezoid.

WELFARE ANALYSIS OF TAXES AND SUBSIDIES
Page 3

But the subsidy program costs the government money

- Cost of program to government $=\operatorname{sub} \times \mathrm{Q}_{\mathrm{s}}$.
- This is more than the gains to producers and consumers.

Summing gains and losses

- Thus the gain to consumers and producers from a subsidy is \qquad than the dollar
cost of the subsidy program to the government.
- There is a deadweight social loss as too
\qquad units are produced.
- The last few units cost more to produce than they are worth to consumers.

Example of subsidy

- Suppose subsidy $=\$ 3$.
- CS increases by \$ \qquad
- PS increases by \$ \qquad
- Cost of subsidy program = \$ \qquad .
- Deadweight loss = \$ \qquad -.

Conclusions

- Total loss of welfare to consumers and producers from a tax is \qquad than actual tax revenues paid to government.
- Total gains to consumers and producers from a subsidy are \qquad than cost of subsidy program to government.
- Both taxes and subsidies cause \qquad as too few or too many units of the good are produced.

PART 3

Choices Underlying Supply and Demand

Big ideas: Buyers and sellers must decide whether to participate in markets and how much to buy or sell. Economic theory assumes buyers and sellers make these decisions by doing the best they can with what they have.

Famous quote: "It is not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but from their regard to their own interest."
--Adam Smith, The Wealth of Nations (1776)

TWO KINDS OF DEMAND CURVES
Page 1

TWO KINDS OF DEMAND CURVES

- How are price and quantity inversely related, as the Law of Demand claims?

Law of Demand

"If the price falls, people buy more, ceteris paribus" can mean two things:

1. More people buy the good (a change at the \qquad margin), or
2. Each person buys more of the good (a change at the \qquad margin).

Example: demand for smartphones

- Suppose Amy is willing to pay $\$ 500$ for a smart phone.
- Bob is willing to pay $\$ 450$.
- Cameron is willing to pay $\$ 300$.
- Dylan is willing to pay $\$ 200$.
- Emily is willing to pay $\$ 150$.
ange in price causes change in quantity demanded at the \qquad margin.

Stairsteps in a large market

- In a large market, stair-steps are nearly invisible.
- Demand curve can be closely approximated a smooth curve.

TWO KINDS OF DEMAND CURVES
Page 2

2. "Each person buys more"

- Suppose each person can buy many units, perhaps even fractional amounts: " \qquad " decision.
- Example: gasoline, electricity, ground beef, ice cream, phone usage.
- How much each person wants depends on price.
- Change in price causes change in quantity demanded at the \qquad margin.

Example: market demand for gasoline

Leads to smooth market demand curve

- Market demand is the sum of the quantities chosen by each person in the market.
- But how does each person choose how much to buy?
- Short answer: \qquad
- Long answer: see next slideshows.

Conclusions

- There are two kinds of demand curves.
- First kind applies to goods of which each person buys at most one. As price falls,
\qquad the good.
- Second kind applies to goods of which each person can buy many. As price falls,
\qquad of the good.
- Second kind is focus of what follows.

THE CONSUMER'S BUDGET CONSTRAINT
Page 1

THE CONSUMER'S BUDGET CONSTRAINT

- What set of choices are available to a consumer?
- How does this set change when the consumer's income changes or prices change?

Choices underlying demand

- In the next few presentations, we show:
- how a demand curve arises from choices made by a rational consumer.

Affordability

- Affordable choices are choices such that spending does not exceed income.
- Affordable choices can be described by an equation called a budget constraint:
- Income = \qquad -. .

The rational consumer

- Assume: As consumers, people do best they can, based on their own values and information, under circumstances they face.
- Implication: People pick the best combination of goods that is affordable.
- Question for this presentation: What does "affordable" mean?

Spending

- The amount spent on a single good is simply the price times the quantity purchased:
- Spending $=\mathrm{pq}$.
- Spending on two or more kinds of goods is the sum of the amounts spent on all goods.
- Suppose we number goods $1,2, \ldots$
- Spending $=p_{1} q_{1}+p_{2} q_{2}+\ldots$

The budget constraint

- Let I = consumer's income (given).
- Then the general form of a budget constraint with two goods is:
- Income $=$ spending, or
- $\mathrm{I}=\mathrm{p}_{1} \mathrm{q}_{1}+\mathrm{p}_{2} \mathrm{q}_{2}$.

THE CONSUMER'S BUDGET CONSTRAINT

Page 2

Budget constraint for 2 goods: Example 1

- Suppose a consumer has income $=\$ 40$ to spend on two goods: food and clothing.
- Let $\mathrm{q}_{1}=$ units of food $\left(\mathrm{p}_{1}=\$ 4\right)$.
- Let $\mathrm{q}_{2}=$ units of clothing $\left(\mathrm{p}_{2}=\$ 5\right)$.
- Then budget constraint:
- $\$ 40=$ \qquad .

Drawing budget constraint

- Budget constraint is a \qquad because $\mathrm{I}=\mathrm{p}_{1} \mathrm{q}_{1}+\mathrm{p}_{2} \mathrm{q}_{2}$ is the equation for a line (assuming $\mathrm{p}_{1}, \mathrm{p}_{2}$, and I are given).
- Several ways to draw this line.
- Easiest way: first find \qquad .
- Intercept = amount consumer could afford to buy if consumer spent entire income on that one good $=$ \qquad .

Barely affordable bundles

- Bundles budget line are just barely affordable.
- Example: a bundle of 5 units of food and 4 units of clothing costs exactly \$ \qquad .

Bundles with money left over

- Bundles budget line do not use up all the consumer's income.
- Example: a bundle of 3 units of food and 2 units of clothing costs only \$ \qquad -.

THE CONSUMER'S BUDGET CONSTRAINT

Page 3

Bundles that are not affordable

- Bundles budget line are not affordable.
- Example: a bundle of 10 units of food and 5 units of clothing costs \$ \qquad -

Computing slope of budget line

- Slope $=$ rise $/$ run = - vertical intercept/ horizontal intercept.
- If good \#1 on vertical axis, then slope $=-\frac{I / p_{1}}{I / p_{2}}=-\frac{p_{2}}{p_{1}}$

Computing slope of budget line: example 1

- Example: Given price of food $=\$ 4$, price of clothing $=\$ 5$.
- Then slope $=$
- $\mathrm{p}_{\text {clothing }} / \mathrm{p}_{\text {food }}$
$=$ \qquad
- Slope depends on prices only, not
\qquad .

Interpreting slope of budget line

- Suppose good \#1 is on vertical axis.
- Slope shows how much of good \#1 must be sacrificed to get one more unit of good \#2.
- Slope = opportunity cost of good \#2.

THE CONSUMER'S BUDGET CONSTRAINT

Page 4

Effect of change in income

- Suppose income increases by, say, 25\%.
- What happens to intercepts?
- What happens to slope?

Effect of increase in p_{1}

- What happens to q_{1} intercept?
- What happens to q_{2} intercept?
- What happens to slope?

Example 2: Price of pizzas

 increases from \$10 to \$20

Effect of increase in p_{2}

- What happens to q_{1} intercept?
- What happens to q_{2} intercept?
- What happens to slope?

THE CONSUMER'S BUDGET CONSTRAINT
Page 5

Effect of price decreases

- Decrease in p_{1}.
- Decrease in p_{2}.

Effect of proportionate change in income and all prices

- Suppose income and all prices increase by, say, 50%.
- What happens to intercepts?
- What happens to slope?
\qquad

Conclusions

- The budget constraint shows combinations of goods affordable to a person facing given income and prices.
- When the person's income changes, budget line \qquad but slope does not change.
- When the price of a good changes, budget line \qquad .

INDIFFERENCE CURVES

- How can we graph consumer preferences for combinations of goods?

The rational consumer

- Assume: As consumers, people do best they can, based on their own values and information, under circumstances they face.
- Implication: people pick the best bundle that is affordable.
- Question for this presentation: What does "best" mean?

Preferences

- "Best" means "most preferred," according to the person's own values and tastes.
- In choosing between two bundles, a person might prefer one bundle, or the other bundle, or might be indifferent between the two.

Indifference curve: definition

- Curve linking bundles between which the person is indifferent-that is, bundles that this consumer finds
\qquad -
- Indifference curves are a graphical representation of a person's preferences.

Indifference curve: example

Suppose the following bundles are equally preferred:

- 7 food, 4 clothing
- 5 food, 5 clothing
- 4 food, 7 clothing

How should we draw the indifference curve?

INDIFFERENCE CURVES

Page 2

Each consumer has many indifference curves

- Bundles on higher indifference curves are preferred to bundles on lower indifference curves.

Different preferences imply different indifference curves

Slope of indifference curves

Slope shows rate at which consumer is willing to trade off one good for another, while staying equally happy.

Slope of indifference curves:

example

- Suppose this consumer has 5 units of food and 5 units of clothing.
- If 1 unit of clothing were taken away, how many more units of food would keep them equally happy?
- \qquad units of food.

INDIFFERENCE CURVES
Page 3

Slope of indifference curves: example (cont'd)

- Suppose this consumer has 7 units of food and 4 units of clothing.
- How much food would they be willing to give up in exchange for 1 more unit of clothing?
- \qquad units of food

Why indifference curves

 are curved- MRS depends on how much a person already has.
- Usually, the less a person has of a good (compared to other goods) the more valuable it is to them.

Marginal rate of substitution (MRS): definition

- MRS of good 2 for $\operatorname{good} 1=\mid$ slope \mid of indifference curve with good \#1 on vertical axis.
- What is this person's MRS of clothing for food between these points? \qquad

Extreme cases of indifference curves

- Perfect complements (MRS = 0 or infinity).

Typical indifference curves

- Smooth.
- Downward-sloping.
- Curved: the MRS gets smaller as we go down the curve.

Conclusions

- Indifference curves show how a consumer ranks alternative bundles.
- They connect combinations of goods that a person feels are \qquad -preferred.
- They usually slope \qquad and are curved.
- Their \qquad | (or marginal rate of substitution) shows the rate at which a person is willing to trade one good for another.

CONSUMER CHOICE

Page 1

CONSUMER CHOICE

- What bundle of goods will a rational consumer choose?

Rational choice

- A person will choose the affordable bundle that the person most prefers.
- This means choosing bundle on the highest indifference curve that still touches person's budget line.

Where is the rational choice?

- Would a person ever choose a bundle where an indifference curve crosses budget line?
- \qquad
- Can reach a higher indifference curve and stay within budget.

Rational choice is at tangency

- ... between the budget line and the highest indifference curve the consumer can reach.

CONSUMER CHOICE

Page 2

Tangency implies slope of budget line $=$ slope of indifference curve

- |Slope| of budget line $=\mathrm{p}_{2} / \mathrm{p}_{1}$.
- |Slope| of indifference curve
$=$ marginal rate of substitution (MRS) of good 2 for good 1.
- Thus, at rational choice: \qquad

q_{2}

Interpreting tangency

Recall that slope of indifference curve, or
equals rate at which consumer is willing to trade off one good for another, while staying equally happy.

Interpreting tangency (cont'd)

- Let $\mathrm{P}_{\mathrm{F}}=$ price of food.
- Let $\mathrm{P}_{\mathrm{C}}=$ price of clothing.
- At consumer's rational choice,
$\operatorname{MRS}=\mathrm{P}_{\mathrm{C}} / \mathrm{P}_{\mathrm{F}}$.

What does tangency imply?

- Slope of budget line $=\mathrm{P}_{\mathrm{C}} / \mathrm{P}_{\mathrm{F}}$ = rate at which markets consumer to trade one good for another.
- Slope of indifference curve $=$ MRS $=$ rate at which consumer is to trade one good for another.
- At tangency point, consumer's best choice, these are \qquad .

Example: price of food $=\$ 4$ and price of clothing = \$5

- Slope of budget line $=$ $P_{C} / P_{F}=-5 / 4$.
- So markets allow consumer to trade units of food for 1 unit of clothing (and vice versa).
- At tangency, consumer is just willing to make that trade.

Conclusions

- Rational consumer choice means choosing the best affordable bundle.
- Rational consumer choice is at \qquad between budget line and consumer's highest attainable indifference curve.
- At rational choice, $\mathrm{MRS}=$ \qquad .

CONSUMER DEMAND

Page 1

Slope of budget line $=$ slope of indifference curve

- Rational consumer chooses a combination where the budget line is tangent to the highest possible indifference curve.
- If the budget set changes, the consumer must make a new
 choice.
q_{2}

Changes in budget constraint: example 1

Price of

- If one price changes, then budget constraint rotates.
- Suppose income $=\$ 40$ and price of food rises from \$4 to \$10.
- New intercept on food axis $=$ \qquad .

Response to change in price: example 1

- At a price of $\$ 4$, this consumer chose units of food.
- After the price rose to \$10, the consumer chose \qquad units of
$q_{2}=$ clothing - food.

CONSUMER DEMAND

Page 2

Different consumers may make different choices

Conclusions

- A change in the \qquad causes the consumer to choose a new bundle.
- Graphing quantity chosen of a good against its \qquad traces out consumer's demand curve for that good.
- Market demand is the \qquad of quantities demanded by all consumers.

RATIONAL CHOICE

Page 1

Rational choice: definition

- Choosing the best, according to one's own tastes and preferences.
- Distinguish:

Irrational choice
Choice based on preferences that you don't agree with

- Examples:

Choosing whether to do something: one-time action

Examples:

Comparing benefit and cost

- Rational choice: Do something if its benefit exceed its cost.
- That is, if net benefit is positive.
- Example: If latte costs $\$ 3$ and value to you is $\$ 5$, then net benefit is \qquad and the rational choice would be to \qquad .

Choosing how many or how much: repeated action Examples:

Marginal benefit (MB): definition

- Additional benefit provided by the last unit.
- Or, the increase in total benefit provided by the last unit.
- Or, change in benefit divided by change in quantity.
- Formula:
$\mathrm{MB}=$ \qquad .

RATIONAL CHOICE

Page 2

Marginal benefit usually falls

- Marginal benefit usually depends on how many units chosen in total.
- Usually falls with each successive unit.
- Examples:

Marginal cost often rises

- Marginal cost sometimes depends on how many units chosen in total.
- If so, usually rises with each successive unit.
- Examples:

Graphical solution

- Total benefit = area under MB curve.
- Total cost = area under MC curve.
- Total NET benefit = total benefit - total cost.
- Maximized at Q^{*}, where \qquad .

Marginal cost (MC): definition

- Additional cost caused by the last unit.
- Or, the increase in total cost caused by the last unit.
- Or, change in cost divided by change in quantity.
- Formula:
$\mathrm{MC}=$ \qquad .

Comparing marginal benefit and marginal cost

- Rule of rational choice: Keep doing something until its marginal benefit drops below marginal cost.
- This rule maximizes total net benefits = total benefits - total costs.
- Rule has many applications in economics.

Example 1: checked bags	Q	Total	MC
	0 bags	\$0	
- American Airlines			
charges these prices	1 bag	\$25	
domestic flights.			
	2 bags	\$60	
- What is the marginal cost to consumer of each checked bag? - Δ total cost / $\Delta \mathrm{Q}$			
	3 bags	\$210	
	4 bags	\$410	
baggage/baggageAllowance.jsp \#baggage_charges			

RATIONAL CHOICE

Page 3

Example 1: checked bags (cont'd)

- Suppose Abby is willing to pay $\$ 50$ for first bag, $\$ 40$ for second bag, $\$ 20$ for third bag, $\$ 5$ for fourth bag.
- These are Abby's marginal benefits.

Q	MC	MB
0 bags		
	$\$ 25$	
1 bag		
	$\$ 35$	
2 bags		
	$\$ 150$	
3 bags		
	$\$ 200$	
4 bags		

Example 1:
checked bags (cont'd)

- What is Abby's rational choice?
- MB drops below MC after \qquad bags.
- Abby should choose
\qquad bags.

Q	MC	MB
0 bags		
	$\$ 25$	$\$ 50$
1 bag		
	$\$ 35$	$\$ 40$
2 bags		
	$\$ 150$	$\$ 20$
3 bags		
	$\$ 200$	$\$ 5$
4 bags		

Example 2: Demand for gasoline

- Graph shows Ben's weekly demand for gasoline.
- Recall that height of demand curve = Ben's (or MB) of each gallon.

Example 2: Demand for gasoline (cont'd)

- Suppose the price of gasoline $=\$ 3$.
- So $\$ 3$ is Ben's
of gasoline.

Example 2: Demand for gasoline (cont'd)

- What is Ben's rational choice?
- MB drops below MC after \qquad gallons.
- Ben should choose
\qquad gallons per week.

	Tiles Example 3: light-rail line	Total of track cost	MC per mile
- Suppose a city faces these expected costs for a light-rail (trolley) line.	0	$\$ 0$	
- What is the marginal cost per mile? - Δ total cost $/ \Delta \mathrm{Q}$	2	$\$ 2$ mill	
	4	$\$ 4$ mill	
	6	$\$ 10$ mill	
	8	$\$ 18$ mill	
			$\$ 30$ mill

RATIONAL CHOICE

Page 4

Example 3:
light-rail line
(cont'd)

- Suppose a city faces these expected benefits.
- What is the marginal benefit per mile?
- Δ total benefit / $\Delta \mathrm{Q}$

Miles of track	Total benefit	MB per mile
0	$\$ 0$	
2	$\$ 20$ mill	
4	$\$ 30$ mill	
6	$\$ 38$ mill	
8	$\$ 44$ mill	
10	$\$ 46$ mill	

Example 3: light-rail line (cont'd) - How long should the light-rail line be? - MB drops below MC after \qquad miles. - The line should be \qquad miles long.	Miles of track	MC per mile	MB per mile
	0		
		\$1 mill	\$10 mill
	2		
		\$1 mill	\$5 mill
	4		
		\$3 mill	\$4 mill
	6		
		\$4 mill	\$3 mill
	8		
		\$6 mill	\$1 mill
	10		

> Example 3: light-rail line (check)

Does the $\mathrm{MB}=\mathrm{MC}$ rule really work?

Miles of track	Total cost	Total benefit	Total net benefit
0	$\$ 0$	$\$ 0$	
2	$\$ 2$ mill	$\$ 20$ mill	
4	$\$ 4$ mill	$\$ 30$ mill	
$\mathbf{6 ?}$	$\$ 10$ mill	$\$ 38$ mill	
8	$\$ 18$ mill	$\$ 44$ mill	
10	$\$ 30$ mill	$\$ 46$ mill	

Conclusions

- Rational choice means choosing the best alternative, given one's circumstances.
- Rational choice implies that
- a one-time action should be taken if its benefit
\qquad its cost.
- a repeated action should be continued until its MB \qquad its MC.
- A consumer's demand curve is one kind of MB curve, and a good's price is its MC to a consumer.

BUSINESS FIRMS

Page 1

Major kinds of firms in U.S.

- Proprietorships: single owner,
\qquad liability.
- Partnerships: multiple owners,
\qquad
- Corporations: (possibly) multiple owners (stockholders), \qquad liability.

A firm's cost

- Money paid for inputs purchased or hired.

Firm	Cost
Grocery store	Payments to \quad
	Law firm
Automobile manufacturer	Payments to

A firm's revenue

- Money received from selling output.
- Number of units sold \times price.

Firm	Revenue
Grocery store	
Law firm	
Automobile manufacturer	\square.

Profit of the firm

- Profit $=$ total \qquad minus total \qquad .
- We will assume firms make business decisions with intent to maximize their profit.
- Is this a reasonable assumption?

BUSINESS FIRMS

Page 2

Why firms try to maximize profits

(1) Firms are owned and (usually) controlled by people who can keep the profits.
(2) Firms that do not maximize profits do not survive. They are either
that $d o$ maximize profits.
-

by new owners able to exert more control.

Accounting cost versus economic cost

- Accounting cost $=$ money cost measured by standard accounting methods.
- Economic cost $=$ money cost plus cost, if any. Examples:
- Value of proprietor's time, even if unpaid.
- Potential lease value of the firm's buildings and equipment.

Accounting profit versus economic profit

- Economic cost is typically greater than accounting cost.
- Therefore, economic profit is typically
\qquad than accounting profit.
- Economic profit can even be negative (a loss) while accounting profit is positive.
- \qquad profit drives business decisions.

Law of Supply

"If the price rises, firms produce and sell more, ceteris paribus" can mean two things:

1. More firms sell the good (a change at the \qquad margin), or
2. Each firm sells more of the good (a change at the \qquad margin).

Accounting profit versus

 economic profit: example- Adam operates a small business.
- Annual accounting profit is $\$ 20,000$.
- But Adam could earn \$30,000 working for someone else.
- And Adam's equipment could be rented out for $\$ 2,000$ per year.
- Adam's ECONOMIC profit is \qquad

Two kinds of supply curves

- In the next few slideshows, we analyze the intensive margin: how each firm determines \qquad to produce and sell.
- Later, when we discuss business entry and exit, we analyze the extensive margin: how each firm determines \qquad to produce and sell at all.

BUSINESS FIRMS

Page 3

PROFIT MAXIMIZATION
Page 1

PROFIT MAXIMIZATION

- How should a firm choose its level of output to maximize its profit?

Total revenue and output

- Total revenue = money received for outputs sold.
- Let $\operatorname{TR}(q)=$ total revenue function.
- TR generally rises with output.
- (Revenue is a firm's benefit.)

The output decision

- Total revenue, total cost, and profit all depend on how much output is produced and sold.

The rational business owner

- Assume: As business owners, people do best they can, under circumstances they face.
- Implication: Business owners attempt to choose a level of output that maximizes economic profit.
- Question for this presentation: In general terms, what output level will be chosen?

Total cost and output

- Total cost = money paid for inputs hired.
- Let $\mathrm{TC}(\mathrm{q})=$ total cost function.
- TC generally rises with output.

Profit $=$ total revenue - total cost

- Profit
$=\mathrm{TR}(\mathrm{q})-\mathrm{TC}(\mathrm{q})$.
$=$ vertical gap between total revenue and total cost functions.

PROFIT MAXIMIZATION

Page 2

How to maximize profit

If slope of TC < slope of TR, should \qquad output.

If slope of TC $>$ slope of TR, should \qquad output.

Marginal revenue (MR): definitions

- The increase in total revenue caused by the last unit sold.
- Or, slope of total revenue curve.
- Or, change in total revenue divided by change in quantity.
- Formula: $\mathrm{MR}=$ \qquad .
- (MR is a firm's marginal benefit.)

Marginal cost (MC): definitions

- The increase in total cost caused by the last unit produced and sold.
- Or, slope of total cost curve.
- Or, change in total cost divided by change in quantity.
- Formula: $\mathrm{MC}=$ \qquad .

When is profit already maximized?

Profit is maximized where

- vertical gap between TR and TC is greatest.
- slope of TC
$=$ slope of TR.

Marginal cost: example

- Suppose General Manufacturing also has this total cost schedule.
- What is General Mfg.'s MC schedule?

Output	TC	MC
0	$\$ 0$	
10	$\$ 40$	
20	$\$ 100$	
30	$\$ 180$	

PROFIT MAXIMIZATION

Page 3

The " $\mathrm{MR}=\mathrm{MC}$ " rule in graphs

MR(q)
$=$ marginal revenue
$=$ slope of TR.
$\mathrm{MC}(\mathrm{q})$
$=$ marginal cost
$=$ slope of TC.

- Thus profit is maximized when $\operatorname{MR}(q)=\operatorname{MC}(q)$.

The " $\mathrm{MR}=\mathrm{MC}$ " rule in words

- Produce output up to the level where the cost added by the last unit starts to the revenue contributed
by the last unit.
- For business firm, MR=MB. So this is special case of "MB=MC" principle.

Qualification to " $\mathrm{MR}=\mathrm{MC}$ " rule: direction of crossing

- MC can intersect MR from above or below.
- If MC intersects MR from below, that point is \qquad -
- But if MC intersects $\$ /$ unit MR from above, that point is \qquad

Exception to " $\mathrm{MR}=\mathrm{MC}$ " rule: when to shut down completely

- Firm might make a loss at all levels of output.
- In that case the firm should set $\mathrm{q}=$ to cut its losses.
- The MC=MR rule does not apply.

Does the "MR=MC" rule work for General Manufacturing?					
Output TR TC MR MC 0 $\$ 0$ $\$ 0$ Profit 10 $\$ 100$ $\$ 40$ $\$ 8$ $\$ 6$ 20 $\$ 180$ $\$ 100$ 30 $\$ 240$ $\$ 180$					

Graph of General Mfg.'s MR and MC curves

PROFIT MAXIMIZATION
Page 4

Average cost: definition and example				
$\mathrm{AC}=\mathrm{TC} / \mathrm{q}$.	Output	TC	MC	AC
What is General Mfg. Co.'s AC schedule?	0	\$0		
			\$4	
	10	\$40		
			\$6	
	20	\$100		
			\$8	
	30	\$180		

Average cost, price and profit

$$
\begin{aligned}
\text { Profit } & =T R-T C \\
& =p \cdot q-A C \cdot q \\
& =(p-A C) \cdot q
\end{aligned}
$$

- Therefore, profit is positive if and only if price is \qquad than AC .

Marginal cost "pulls" average cost

- When $\mathrm{MC}<\mathrm{AC}$, AC \qquad

- When MC>AC,

AC \qquad .

- When MC=AC, AC neither rises nor falls.
- Curves intersect at minimum AC.
q

Conclusions

- To maximize profit, the firm should choose output such that marginal \qquad equals marginal \qquad .
- This rule is valid if:
- MC crosses MR from below, and
- profit is not negative (AC P).
- MC curve intersects average cost curve at the minimum point of \qquad -

Page 1

PROFIT MAXIMIZATION WHEN PRICE IS TAKEN AS GIVEN

- How should a firm choose its level of output to maximize profit if it cannot control price?

Firms with small market share

- Many firms have small market share, and compete against other firms selling nearly identical products.
- Examples:

"Price-taking" firms

- These firms cannot affect price by changing their level of output.
- They can sell all they want at the market price.
- But they cannot raise that price by restricting production.
- They must take the market price as
\qquad (constant).

Total revenue for a

 "price-taker"- $\operatorname{TR}(\mathrm{q})=$ price $\times \mathrm{q}$.
- But price is a given constant.
- $\operatorname{TR}(\mathrm{q})=$ straight line through origin.
- Slope = \qquad .

Marginal revenue for a

 "price-taker"- $\mathrm{MR}=$ increase in revenue from last unit sold.
- Or, slope of total revenue curve.
- Or, $\Delta \mathrm{TR} / \Delta \mathrm{q}$.
- So for a "price-taker," MR = (constant).

PROFIT MAXIMIZATION WHEN PRICE IS TAKEN AS GIVEN

Page 2

Marginal revenue for a "price-taker": example 1 again

- Again suppose

Acme Mfg. is a small player in its market, and market price $=\$ 5$.

- Then marginal revenue $=$ \qquad -.

Maximizing profit

- Profit gap is widest when slope of TC equals slope of TR.
- So a "price-taker" maximizes profit by choosing q where $\mathrm{MR}=$
\qquad -.

Qualification and exception

- Qualification: $\mathrm{MC}(\mathrm{q})$ must intersect price from below.
- Otherwise, a profit minimum!
- Exception: Profit must not be negative.
- Thus $\mathrm{TR}(\mathrm{q}) \geq \mathrm{TC}(\mathrm{q})$ or $\mathrm{P} \geq \mathrm{AC}(\mathrm{q})$.
- Otherwise, firm can cut its losses by shutting down ($q=$ \qquad)!

As price changes, firm must adjust output to maximize profit

- Marginal cost slopes up (in relevant range).
- So the higher the price, the output the firm will want to produce to maximize profit.

Example 1 again: Suppose Acme Mfg. has these MC and AC curves

- If price is less than $\$ 2, \$ 9-\mathrm{MC}(\mathrm{q})$ produce \qquad units.
- If price $=\$ 5$, produce about \qquad units.
- If price $=\$ 8$, produce about \qquad units.

Shutdown price $=\min \mathrm{AC}(\mathrm{q})$

\qquad

PROFIT MAXIMIZATION WHEN PRICE IS TAKEN AS GIVEN

Page 3

Firm's supply curve: definition

- Curve showing how much output firm will produce at any given price.
- Graph is identical to MC curve, above shutdown price.

```
Shutdown price
``` \(=\min \mathrm{AC}(\mathrm{q})\)


\section*{Conclusions}
- For a firm that takes price as given, marginal revenue \(=\) \(\qquad\) -
- To maximize profit, a "price-taking" firm chooses output so that \(\qquad\) \(=\) price .
- This rule is valid if MC is rising and profit is nonnegative (\(\mathrm{P} \geq \mathrm{AC}\)).
- If profit is negative the firm can cut its losses by \(\qquad\) -.

THE FIRM'S COST IN THE SHORT RUN
Page 1

\section*{THE FIRM'S COST IN THE SHORT RUN}
- What do the firm's cost curves look like when there is not enough time to adjust all inputs?

\section*{Responding to a drop in price}
- Suppose a business like a copy shop faces a sudden change in demand-say, a drop in price.
- It can quickly reduce its costs for paper, toner, electricity, and maybe labor.
- But it may have signed a long-term lease for the copy machine and the store.
- What quantity should it produce now?

\section*{Adjusting inputs quickly}
- All businesses find that some inputs are easier to adjust quickly than others.
- Examples: Easy or hard?
- Materials inputs \(\qquad\)
- Labor inputs
- Equipment inputs \(\qquad\)
- Buildings and structures \(\qquad\)
"Short-run" versus "long-run" behavior
- Long run = period of time over which people \(\qquad\) fully adjust to a change.
- Short run = period over which people
\(\qquad\) fully adjust to a change.
- In short run, firm can adjust only some inputs to maximize profits.

\section*{Two kinds of inputs in the} short run
- Variable inputs \(=\) inputs that can be adjusted in the short run.
- Examples: \(\qquad\)
- Fixed inputs = inputs that cannot be adjusted in the short run. Levels are dictated by past decisions.
- Examples: \(\qquad\)

\section*{Two kinds of cost in the short run}
- Short-run variable cost \((S V C)=\) payments for variable inputs.
- Examples: \(\qquad\)
- Short-run fixed cost \((S F C)=\) payments for fixed inputs.
- Examples: \(\qquad\)
- Short-run total cost \((S T C)=\) SVC + SFC.

THE FIRM'S COST IN THE SHORT RUN
Page 2

\section*{What the short-run total cost curve looks like}
- SFC are constant, regardless of output.
- SVC start at zero and increase with output.
- \(\mathrm{STC}=\mathrm{SFC}+\mathrm{SVC}\).
- So intercept of STC \(=\) \(\qquad\) .

\section*{Copy shop example}
- Suppose a copy shop pays \(\$ 1200\) per month to rent a store and \(\$ 300\) per month to lease a copy machine.
- Then its SFC
= \$ \(\qquad\) -.

\section*{Short-run versus long-run total cost curves}
- In general, short-run total cost \(\operatorname{STC}(\mathrm{q})\) is higher than long run total cost TC(q).
- Reason: Given time to adjust all inputs, firm can cut costs.

\section*{Short-run average cost concepts}
- Short-run average fixed cost (SAFC)
= \(\qquad\) .
- Short-run average variable cost (SAVC)
= \(\qquad\) _.
- Short-run average total cost (SATC)
\(=\mathrm{STC} / \mathrm{q}\)
\(=\) \(\qquad\) .

\section*{The SATC curve}
- SATC typically falls and then rises.
- Minimum SATC
= lowest price at which firm can avoid losses
\(=\) breakeven price .

THE FIRM'S COST IN THE SHORT RUN
Page 3

\section*{The SAFC curve}
- Recall SFC is constant.
- \(\quad\) So \(\mathrm{SAFC}=\mathrm{SFC} / \mathrm{q}\) must decrease with q , approaching \(\qquad\) .
- Example: If copy shop has \(\mathrm{SFC}=\$ 1500\), then its \(\mathrm{SAFC}=\) \(\qquad\)

\section*{Short-run marginal cost}
- Short-run marginal cost (SMC)
\(=\) increase in short-run total cost caused by the last unit produced
\(=\Delta \operatorname{STC} / \Delta \mathrm{q}=\Delta \mathrm{SVC} / \Delta \mathrm{q}\).
- In short run, by definition, output and costs rise only from increase in variable inputs.
- SMC is \(\qquad\) of STC (or SVC) curve.

\section*{The SAVC curve}
- SATC \(=\mathrm{SAFC}+\) SAVC.
- So the gap between SATC and SAVC is just SAFC.
- So the gap must
\(\qquad\) with q .

\section*{SMC curve "pulls" SATC curve}
- When SMC<SATC, SATC \(\qquad\)

q
- When SMC>SATC, SATC
- Curves intersect at minimum SATC.

\section*{All three SR cost curves together}
- Typically, all three curves are U-shaped.
- SMC intersects the other curves at their points.

THE FIRM'S COST IN THE SHORT RUN
Page 4

Example 1: What is the breakeven price?

Breakeven price
= minimum SATC
\(=\) lowest price at which firm can avoid losses \(=\$\) \(\qquad\) -.

\section*{Conclusions}
- In short run, the firm can vary some inputs to change output, but other inputs are \(\qquad\) .
- Avg. costs of these inputs per unit of output are called SAVC and SAFC, respectively.
- Short-run marginal cost (SMC) is the cost of an additional unit of output, produced by increasing __ inputs only.
- SMC intersects SAVC and SATC at their
\(\qquad\) points.

PROFIT MAXIMIZATION IN THE SHORT RUN

\section*{Page 1}

\section*{PROFIT MAXIMIZATION IN THE SHORT RUN}
- How should a firm choose its level of output to maximize profits when some inputs are fixed?
- When should the firm shut down?

\section*{Total revenue and marginal} revenue for a "price-taker"
- Total revenue
\(=\) price \(\times \mathrm{q}\),
a straight line through the origin with slope \(=\) \(\qquad\) -

- Marginal revenue
\$/unit
\(=\) \(\qquad\)
MR
q

\section*{MARGINAL revenue for a "price-taker": example}
- Again suppose Acme Mfg. is a small player in its market, and market price \(=\$ 5\).
- Then marginal revenue \(=\) \(\qquad\) -

\section*{TOTAL revenue for a} "price-taker": example
- Suppose Acme Manufacturing is a small player in its market.
- Suppose market price \(=\$ 5\).
- Then total revenue \(=\) \(\qquad\) -

\section*{Only short-run costs are relevant}
- Long-run TC function is irrelevant.
- Cannot reach it in the short run.

\section*{PROFIT MAXIMIZATION IN THE SHORT RUN}

\section*{Page 2}

A rule for profit maximization in the short run

Profits are maximized where:
- vertical gap between TR and STC is greatest.
- slope of STC = slope of TR.

\section*{Qualification to the rule: direction of crossing}
- \(\operatorname{SMC}(\mathrm{q})\) must intersect p from below.
- Otherwise, a profit minimum!
- Here, which \(\mathrm{p}=\mathrm{SMC}\) intersection is the true profit maximum?

The "marginal cost = marginal revenue" rule again
- \(\operatorname{SMC}(\mathrm{q})=\) slope of STC.
- \(\mathrm{MR}=\mathrm{p}=\) slope of TR.
- Thus profits are maximized when
\(\qquad\) \(=\) \(\qquad\)

\section*{Exception to the rule: when to shut down completely}
- If firm shuts down (setting \(\mathrm{q}=0\)), then profit \(=\)
- If setting \(\mathrm{p}=\mathrm{SMC}\) causes greater losses than this, firm should shut down.
- The \(\mathrm{p}=\) SMC rule does not apply.

\section*{Copy shop example}
- Suppose a copy shop spends \(\$ 3000\) per month on paper \(\$ 5000\) per month on labor \(\$ 500\) per month on electricity \(\$ 1200\) per month to rent store* \(\$ 300\) per month to lease machine**
- Shop receives \(\$ 9000\) per month in revenue.
- Shut down? \(\qquad\)
* Just signed a three-year lease. ** Just signed one-year lease.

PROFIT MAXIMIZATION IN THE SHORT RUN

\section*{Page 3}

\section*{Why shutdown decision depends only on variable costs}

\section*{Stay open for business}
- Revenue:
- Costs:
\$3000 paper
\(\$ 5000\) labor
\(\$ 500\) electricity
\(\$ 1200\) rent store
\(\$ 300\) lease machine

Shut down
- Revenue:
\$0
- Costs:
\(\$ 1200\) rent store
\(\$ 300\) lease machine

\section*{Short-run shutdown price}
- Shut down if revenue \(<\) SR variable cost:

TR < SVC
- Shutdown price \(=\) minimum SAVC .

\section*{Shutdown price versus breakeven price}
- If price < min SATC, firm makes losses, but it does not necessarily shut down.
- \(\min \mathrm{SATC}=\) breakeven price.

- If price \(<\min \mathrm{SAVC}\), firm will shut down.
- \(\min \mathrm{SAVC}=\)
q shutdown price.

Example: deriving firm's supply curve from its cost curves
- Shutdown price \(=\) \$ \(\qquad\) .
- Below this price, firm's supply curve \(=\)
\(\qquad\)
- Above this price, firm's supply curve \(=\)
\(\qquad\) curve.

PROFIT MAXIMIZATION IN THE SHORT RUN
Page 4

Example: deriving firm's supply curve from its cost curves (cont'd)
- If \(\mathrm{P}=\$ 9\), firm produces about units output.
- If \(\mathrm{P}=\$ 4\), firm produces about units output.
- If \(\mathrm{P}=\$ 1.50\), firm produces \(\qquad\) units output.

\section*{Conclusions}
- To maximize profits in the short run, the pricetaking firm chooses output so that price equals
- This rule is valid if SMC crosses price from below and losses are less than SFC--that is, if price is greater than \(\qquad\) -.
- If price is below minimum SAVC, then the firm can reduce its losses by shutting down.
- SFC are \(\qquad\) and cannot be avoided.

\section*{Page 1}

\section*{DISCOUNTING AND THE VALUE OF THE FIRM}
- How can a firm maximize profit when costs and revenues happen at different points in time?

\section*{Costs now, revenues later}
- Firms often take on projects that incur cost now without generating much revenue right away.
- Examples:

Drug company - \(\qquad\) Car company Internet company - \(\qquad\)
- Simple maximization of current profit cannot explain this behavior.

\section*{Rational decision-making}
- Firms must compare cost incurred today with revenue received in the future.
- One way to do this: convert all future payments into equivalent dollars today.

\section*{Definition of present discounted value (PDV)}
- PDV of X dollars to be received N years from now in the future is amount of money one would need to put aside now, earning interest, to have \(X\) dollars by \(N\) years from now.

\section*{Discounting over a one-year interval (\(\mathrm{N}=1\))}
- Suppose X dollars will be received one year from now.
- Then \(\mathrm{X}=\mathrm{PDV} \times(1+\mathrm{r})\), so \(\mathrm{PDV}=\mathrm{X} /(1+\mathrm{r})\).
- Example: \(\$ 110\) to be received one year from now, interest rate \(=10 \%\).
- \(\operatorname{PDV}=\$\) \(\qquad\) -.

\section*{Discounting over many years: compounding}
- Suppose X dollars will be received N years from now.
- Then \(\mathrm{X}=\mathrm{PDV} \times(1+\mathrm{r})^{\mathrm{N}}\).
- \(\operatorname{So} \operatorname{PDV}=\mathrm{X} /(1+\mathrm{r})^{\mathrm{N}}\).
- Example: \(\$ 1000\) to be received 5 years from now, interest rate \(=8 \%\).
- PDV \(=1000 /(1.08)^{5}=\) \(\qquad\)

\section*{DISCOUNTING AND THE VALUE OF THE FIRM \\ Page 2}

Interpreting the formula: \(\mathrm{PDV}=\frac{X}{(1+r)^{N}}\)
- The earlier money is received, the

PDV, because money received earlier can grow by earning interest.

\section*{Discounting a stream of payments}
- Suppose a stream of payments will be received: \(\mathrm{X}_{1}\) dollars 1 year from today, \(\mathrm{X}_{2}\) dollars in 2 years, \(X_{3}\) dollars in 3 years, etc.
- PDV of a stream = sum of individual PDVs: \(P D V=\frac{X_{1}}{(1+r)}+\frac{X_{2}}{(1+r)^{2}}+\frac{X_{3}}{(1+r)^{3}}+\ldots\)

Discounting a stream of payments: example
- Example: \(\$ 1000\) to be received 1 year from now, \(\$ 3000\) in 5 years, \(\$ 5000\) in 10 years, interest rate \(=5 \%\).
\(P D V=\frac{1000}{(1.05)}+\frac{3000}{(1.05)^{5}}+\frac{5000}{(1.05)^{10}}=\)
\(=\) \(\qquad\)
\(=\) \(\qquad\) -

- The higher the interest
\(\$ 100\) to be received
in 5 years rate, the the PDV of money received in the future.

Interpreting the formula: \(\mathrm{PDV}=\frac{X}{(1+r)^{N}}\)

\section*{Discounting a perpetual stream of payments}
- Suppose X dollars will be received one year from now and every year thereafter, forever.
- Amount of money one would need to put aside now, earning interest, to generate this stream satisfies the equation: \(\mathrm{X}=\mathrm{PDV} \times \mathrm{r}\).
- Therefore: PDV = \(\qquad\) .

\section*{Discounting a perpetual stream: example}
- Example: \(\$ 10,000\) to be received one year from now and every year thereafter, forever. Interest rate \(=5 \%\).
- \(\operatorname{PDV}=10,000 / 0.05=\) \(\qquad\) .

\section*{DISCOUNTING AND THE VALUE OF THE FIRM \\ Page 3}

\section*{Net present value}
- NPV of a project = PDV of (revenues - costs).
- Example: suppose a company's project would cost \(\$ 1000\) now but bring in \(\$ 500\) in revenue next year and \(\$ 700\) two years from now. Assume interest rate \(=8 \%\).
- \(\mathrm{NPV}=-1000+\frac{500}{1.08}+\frac{700}{(1.08)^{2}}=\$\) \(\qquad\)

\section*{Value of the firm}
- Firms with many projects incurring cost now and generating revenue in the future must think ahead.
- Instead of maximizing only current profit, they maximize current profit plus PDV of expected future profits.
- This is called the \(\qquad\) of the firm.

\section*{Value of the firm: example}
- Suppose a firm will make \(\$ 30\) million in profit one year from now and every year thereafter, perpetually.
- Assume the interest rate is \(6 \%\).
- Then the value of the firm
\(=\$ 30\) million \(/ 0.06=\$\) \(\qquad\) million.

\section*{Conclusions}
- Firms often take on projects that incur cost now and generate revenue in the future.
- Future revenues can be compared to current costs by taking their \(\qquad\) values.
- The value of a firm = current profit plus present discounted value of its future
\(\qquad\) -.

\section*{Page 1}

\section*{LONG-RUN COMPETITIVE EQUILIBRIUM}
- What choices does a firm have in the long run?
- What happens to markets in longrun competitive equilibrium?

\section*{Two kinds of equilibrium for firms}

Short-run equilibrium Long-run equilibrium
Each firm can change its Each firm can change variable inputs to maximize profit.
Other inputs are fixed.
Number of firms in the industry is fixed.

New firms can industry and existing firms can industry.

\section*{Definitions: review}
- Short run = period of time over which firms have \(\qquad\) flexibility. Some costs are sunk. For example, leases must be paid.
- Long run \(=\) period of time over which firms have \(\qquad\) flexibility. No costs are sunk. Leases expire and can be renewed or not.
- Equilibrium = situation where no one wants to change. Change what?

How firms adjust inputs in the long run: review
- To maximize its own profit, firm chooses output level such that \(\mathrm{P}=\) long-run MC.
- Unless \(\mathrm{P}<\) long-run \(\min \mathrm{AC}\), in which case the firm shuts down to avoid losses.

\section*{How firms decide whether to leave an industry}
- In the short run, if firms make losses, they keep operating if they make enough revenue to cover their \(\qquad\) costs.
- In other words, they keep operating in the short run if \(\mathrm{P}>\) min \(\qquad\) , even if they make losses.

\section*{LONG-RUN COMPETITIVE EQUILIBRIUM}

\section*{Page 2}

\section*{How firms decide whether to leave an industry (cont'd)}
- However, in the long run, \(\qquad\) inputs can be adjusted, so firms can cut their losses to \(\qquad\) by shutting down (leaving industry).
- So firms making losses leave the industry as soon as they can get rid of their fixed costs.
- In the popular press, this is called a "shake-out."

\section*{How firms decide whether to} leave an industry: example
- Example: if price < _ , this firm shuts down (leaves the industry).
- The firm might continue to exist if it sells other products in other industries.

\section*{When firms leave an industry,} the equilibrium price \(\qquad\)
- Are the exiting firms trying to raise the price?
- \(\qquad\)
- They are just trying to avoid losses.
- Inadvertently, they push the price up.

\section*{How firms decide whether to enter an industry}
- If \(\mathrm{P}^{*}>\min \mathrm{AC}\), then existing firms in an industry are making profits and people will notice.
- Some people ("entrepreneurs") may form new firms ("start-ups").
- Also, firms in other industries may try to expand into this industry.
- Profit attracts new firms as honey attracts bears.

\section*{LONG-RUN COMPETITIVE EQUILIBRIUM}

\section*{Page 3}

\section*{How firms decide whether to enter an industry: example}
- Example: if price > __ , this firm can make profit
- Entrepreneur should be able to borrow money from bank or venture capitalist.

When new firms enter an industry, the equilibrium price \(\qquad\)
- Are the new firms trying to lower the price?
- \(\qquad\) \(!\)
- They are just chasing profit opportunities.
- Inadvertently, they push the price down.

What happens to the industry's SR supply curve when new firms enter?
- The SR supply curve is drawn assuming a fixed number of firms
- So if the number of firms increases, the SR supply curve must shift \(\qquad\) -

How far does the industry's SR supply curve shift?
- Since the supply curve shifts right, P * falls.
- Supply keeps shifting right, and \(P^{*}\) keeps falling, until firms no longer have any reason to enter.
- That is, when \(\mathrm{P}^{*}\) falls to \(\qquad\) .

\section*{Reminder about economic versus} accounting cost and profit
- Accounting cost \(=\) money cost measured by standard accounting methods.
- Economic cost \(=\) money cost plus implicit opportunity cost.
- Economic profit \(=\) total revenue minus total economic cost.

\section*{Page 4}

\section*{What opportunity costs include}
- A \(\qquad\) rate of return on invested financial capital.
- The opportunity cost of renting or licensing things that the firm owns, such as real estate, copyrights, or patents.
- For small firms, the opportunity cost of the owner's time.
- So "zero economic profit" usually corresponds to
\(\qquad\) accounting profit.

Free entry = \(\qquad\) legal barriers
to entering the industry
- There are few legal entry barriers in most industries in most developed countries.
- However, if there are entry barriers, then firms can enjoy
\(\qquad\) economic profit indefinitely.

\section*{Implications of two kinds of equilibrium for firms}

Short-run equilibrium
- SR supply curve is horizontal sum of all firms' SMC curves.
- In equilibrium, firms may make profit or loss.
- In equilibrium, \(\mathrm{P}=\mathrm{SMC}\).

Long-run equilibrium
- LR supply curve reflects and \(\qquad\) of firms.
- In equilibrium, all firms make \(\qquad\) economic profit.
- In equilibrium, \(\mathrm{P}=\mathrm{MC}\) and \(\mathrm{P}=\mathrm{AC}\).

\section*{Conclusions}
- In the long run, firms can:
- adjust all their inputs to maximize profit (the intensive margin),
- \(\qquad\) or \(\qquad\) any industry in response to profit opportunities (the extensive margin).
- Therefore, in long-run equilibrium, all firms make \(\qquad\) economic profits.

\section*{Page 1}

\section*{HORIZONTAL LONG-RUN SUPPLY CURVES}
- What determines the long-run supply curve for an industry?
- Why is long-run supply often horizontal?

Long-run supply curve: definition
- Curve relating price and quantity supplied, when firms can:
- adjust all their inputs,
\(\qquad\) an industry to exploit profit opportunities.
- \(\qquad\) the industry to cut losses.
- Two most likely shapes: horizontal or upward-sloping.

What conditions cause horizontal long-run supply?
(1) Many firms have same cost of producing a good in long run, and
(2) Their costs do not depend on total size of industry.
- Minimum \(\mathrm{AC}=\mathrm{AC}\) * is constant.

\section*{"Constant-cost industry"}
- Definition: cost curves (and min AC) are not affected by size of industry.
- Examples:
- Copy shops
- Restaurants
- Grocery stores

\section*{"Constant-cost industry"}
- Definition: cost curves (and min AC) are not affected by size of industry.
- Examples:

\section*{Profits encourage entry}
- If price \(>\mathrm{AC}^{*}\), firms will enter industry, looking for profits.
- SR supply curve shifts right.
- Keep entering until

HORIZONTAL LONG-RUN SUPPLY CURVES

\section*{Page 2}

\section*{Losses encourage exit}
- If price \(<\mathrm{AC}^{*}\), firms will leave industry, to escape losses.
- Keep leaving until

\section*{Constant-cost industry must have horizontal long-run supply}
- Price keeps returning to \(\mathrm{AC}^{*}\) in long run.
- So long-run supply is horizontal at AC*.
- \(\qquad\) elastic.

\section*{Adjustment of supply in response to a change in demand}
- Suppose demand shifts left or right.
- In SR, number of firms in industry is \(\qquad\) so SR supply curve is relevant.
- In LR, number of firms in industry may
\(\qquad\) , so LR supply curve is relevant.
- Together, SR and LR supply curves help explain how price fluctuates over time.

SR response to increase in demand: price rises, existing firms increase production

Min AC, typical firm

HORIZONTAL LONG-RUN SUPPLY CURVES

\section*{Page 3}

LR response to decrease in demand: firms leave industry to escape losses, price rises

Min AC, typical firm

\section*{Conclusions}
- Long-run supply shows how price affects quantity supplied when firms have enough time to
or \(\qquad\) the industry.
- Long-run supply is \(\qquad\) elastic) if all firms have the same costs and these costs are unaffected by total size of industry (a constant cost industry).
- In this case, price always returns to the same value (\(\mathrm{AC}^{*}\)) after demand shifts.

\section*{Page 1}

\section*{UPWARD-SLOPING LONGRUN SUPPLY CURVES}
- Why does long-run supply sometimes slope upward?

What conditions cause upwardsloping long-run supply?
(1) Costs of each firm might rise as industry expands, and/or
(2) Some firms might be more efficient than others.
- We now look at both scenarios.
(1) What happens when costs rise as industry expands
- Reason: Limited supply of some input.
- Input price gets bid up as industry output grows.
- Each firm's costs rise.
- Example:

(2) What happens when some firms more efficient than others
- First few firms might be very efficient.
- As price rises, other less-efficient firms enter industry.
- First few firms then enjoy "economic rents."

Example of limited supply of an input: land in Manhattan, New York City

Example of some firms (farms) more efficient than others

Corn-growing counties when price was low.

Corn-growing counties when price was high.

\section*{Page 2}

\section*{"Increasing-cost industry"}
- Definition: cost curves (and min AC) of all firms, or just the last firm, increase as the industry expands.
- Thus, either scenario (1) or (2).
- Examples:

\section*{Effect on AC* as the industry expands}
- Let \(\mathrm{AC}^{*}\) denote the average cost of the last firm.
- Under either scenario (1) or (2), \(\mathrm{AC}^{*}\) increases as industry expands.

\section*{Entry and exit}
- If price is low, only a ___ firms will \(\overline{\text { enter the industry. }}\)
- If price rises, firms are willing to enter the industry.
- But price must remain high or they will not stay.

\section*{Adjustment of supply in response} to a change in demand
- Suppose demand shifts left or right.
- In SR, number of firms in industry is \(\qquad\) , so SR supply curve is relevant.
- In LR, number of firms in industry may
\(\qquad\) , so LR supply curve is relevant.
- Together, SR and LR supply curves help explain how price fluctuates over time.

SR response to increase in demand: price rises, existing firms increase production

\section*{UPWARD-SLOPING LONG-RUN SUPPLY CURVES}

Page 3

SR response to decrease in demand: existing firms decrease production, price falls

\section*{Conclusions}
- Long-run supply slopes \(\qquad\) if
firms have different costs or if their costs \(\ldots\) as total industry output increases (an increasing-cost industry).
- In this case, price returns
back to its earlier value after demand shifts.

\section*{PART 4}

\section*{Perfect and Imperfect Competition}

Big ideas: Marginal-cost pricing makes competitive markets efficient. But sellers, if they are few in number, try to limit competition and push price above marginal cost. This helps sellers, of course, but hurts society as a whole.

Famous quote: "People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices."
--Adam Smith, The Wealth of Nations (1776)

\section*{PERFECT COMPETITION}

\section*{Page 1}

\section*{PERFECT COMPETITION}
- What is "perfect competition"?
- Why do firms take price as a given?

\section*{Competition and perfect competition: definitions}
- Competition \(=\) process by which each firm tries to increase its own profits at the possible expense of \(\qquad\) firms' profits.
- Perfect competition = competition among firms that produce perfect and take the market \(\qquad\) as given.

What it means to "produce perfect substitutes"
- Consumers don't care whom they buy from.
- Products of different firms are identical in consumers' eyes-no brand preference.
- Consumers buy from firm offering lowest
- Examples: \(\qquad\)
\(\qquad\)
\(\qquad\)
"Price-taking" firm perceives its demand curve to be perfectly elastic
- Firm's revenue \(=\) \(\mathrm{P} * \times \mathrm{q}\) and \(\mathrm{MR}=\mathrm{P}^{*}\).
- Example: suppose market price \(\mathrm{P}^{*}=\$ 5\)
- Then \(\mathrm{TR}=\$ 5 \times \mathrm{q}\) and \(\mathrm{MR}=\$ 5\).
- Selling one more unit increases firm's revenue by \(\$ 5\).

What it means to "take market price as given"
- Firm must match price charged by rivals.
- Firm believes it will not affect price by changing output.
- Cannot push price \(\qquad\) by selling less.
- Cannot push price \(\qquad\) by selling more.
- No "market power" (i.e., pricing power).

\section*{PERFECT COMPETITION}

\section*{Page 2}

Why firms often perceive their demand to be perfectly elastic

Firm believes if it sells
more, total output Q* and market price \(\mathrm{P}^{*}\) will hardly change, either because it ...
- will simply take business away from its rivals, or
- is too \(\qquad\) to make a difference.

What is exact relationship between market elasticity and firm's elasticity?
- Let \(\varepsilon_{\mathrm{M}}=\frac{\Delta Q / Q}{\Delta P / P}=\) market elasticity of demand.
- Assume that if firm increases its own output by some amount \((\Delta q)\), then its rivals do change their outputs.
\(\overline{\text { So } \Delta q}=\Delta \mathrm{Q}\).
- What is the firm's elasticity of demand?

What is exact relationship between market elasticity and firm's elasticity? (cont'd)
- Let \(\mathrm{S}=\mathrm{q} / \mathrm{Q}=\) firm's market share. So \(\mathrm{q}=\mathrm{S} \mathrm{Q}\).
- Let \(\varepsilon_{\mathrm{F}}=\frac{\Delta q / q}{\Delta P / P}=\) firm's elasticity of demand.
- Substitute: \(\frac{\Delta q / q}{\Delta P / P}=\frac{\Delta Q /(S Q)}{\Delta P / P}=\frac{\Delta Q / Q}{\Delta P / P} \cdot \frac{1}{S}\).
- So \(\varepsilon_{F}=\)

So a firm with small market share must perceive its own demand to be very elastic
- Example:

Suppose market elasticity \(=\varepsilon=-4\) and firm's market share \(=\mathrm{S}=0.05\).
- Then firm's elasticity \(=-4 / 0.05=\) \(\qquad\) .

\section*{Price taking: short-run versus long-run}
- Firm sometimes has market power in short run but not \(\qquad\) run.
- Initially, might be one of only a few firms in the industry.
- Later, many more firms enter industry and firm's market share \(\qquad\) -.
- Examples: \(\qquad\)

\section*{PERFECT COMPETITION}

Page 3

\section*{Conclusions}
- Perfect competition arises if consumers view firms' outputs as perfect \(\qquad\) -. and firms take market price as
- A firm takes price as given if it thinks the price will \(\qquad\) change if it sells more, either because it will simply take business away from its rivals, or because it is too
\(\qquad\) to make a difference.

\section*{EFFICIENCY OF PERFECTLY COMPETITIVE MARKETS}
- Are perfectly competitive markets efficient?
- Do they divide the gains from trade equally between buyers and sellers?
- Why are some groups opposed to competition?

What is so efficient about the competitive equilibrium?
- Suppose equilibrium in the market for teeshirts occurs at \(\mathrm{Q}=500\).
- Is this more efficient than, say, \(\mathrm{Q}=300\) or \(\mathrm{Q}=600\) ?

\section*{Inefficiency from too little output}

\section*{Inefficiency from too little output (cont'd)}
- Suppose only 300 teeshirts were produced.
- Then consumers would be willing to pay \$ \(\qquad\) for another tee-shirt.
- Marginal cost of making another teeshirt would be \(\$\) \(\qquad\)

- Marginal benefit to consumers of another tee-shirt exceeds marginal cost to producers.
- So increasing output passes the

> (whether or not producers are actually paid for the teeshirt). \(\rightarrow\)-Demand - Supply

\section*{Inefficiency from unexploited surplus}
- Put differently, there is a surplus of \(\$ 14-\$ 8=\) \$ \(\qquad\) from making \(301^{\text {st }}\) tee-shirt.
- No matter how that surplus is divided, producing \(301^{\text {st }}\) teeshirt is a potential Pareto improvement.

\section*{Inefficiency from too much output}
- Suppose 600 tee-shirts were produced.
- Then consumers were willing to pay only \$ \(\qquad\) for \(600^{\text {th }}\) teeshirt.
- But marginal cost of making \(600^{\text {th }}\) tee-shirt was \$ \(\qquad\) .

\section*{Inefficiency from too much output (cont'd)}
- The cost savings from producing one less teeshirt exceeds the lost benefit to consumers.
- So decreasing output passes the
(whether or not consumers actually receive a refund).

\section*{Inefficiency from negative surplus}
- Put differently, there is a negative surplus of \(\$ 11-\$ 8=\$\)
from producing \(600^{\text {th }}\) tee-shirt.
- Not producing \(600^{\text {th }}\) tee-shirt is a potential Pareto improvement.

\section*{Efficiency of competition}
- Starting from the competitive level of output, no increase or decrease can pass the
Put differently, the competitive level of output maximizes the
\(\qquad\) -.

\section*{Gains from trade}
- Through \(\qquad\) pricing, competition maximizes the total surplus.
- But it also divides that surplus between consumers and producers.
- We can measure how much they gain using concepts of consumer surplus (CS) and producer surplus (PS).

\section*{Why competition is efficient}
- Competition ensures that price \(=\)
- Everyone willing to pay marginal cost of the good, will buy it.
- Anyone not willing to pay marginal cost, will not buy it.

Measuring gains from trade in a competitive market
- \(\mathrm{CS}=\) area between demand curve and horizontal line at \(\mathrm{P}^{*}\).
- \(\mathrm{PS}=\) area between the supply curve and the horizontal line at \(\mathrm{P}^{*}\).
- Total gains from trade in this market \(=\) total surplus \(=\mathrm{CS}+\mathrm{PS}\).

\section*{Market controls}
- Although total surplus is maximized by competition, groups of buyers or sellers may enjoy higher surplus if the market is controlled in some way.
- They may try to get government to impose regulations like \(\qquad\)
\(\qquad\) .
- Or they may try to gain market power.

\section*{Why the market mechanism is sometimes controversial}
- Everyone likes the idea of maximizing total surplus.
- Not everyone likes the way competitive markets the surplus between consumers and producers.

\section*{When markets are not competitive}
- We can compare free competition with regulation or monopoly by comparing gains from trade: \(\qquad\) surplus,
\[
\ldots \text { surplus, and total surplus. }
\]
- Measurement of gains from trade from changes in markets is called " \(\qquad\) analysis."

\section*{Conclusions}
- Competition, through pricing, ensures that the level of output is
\(\qquad\) —.
- Total gains from trade in a market are the sum of consumer and producer \(\qquad\) _, which are not necessarily equal.
- Competition maximizes the \(\qquad\) surplus, but some groups may do better with government controls or market power.

ECONOMY-WIDE EFFICIENCY
Page 1

\section*{Markets are linked}
- Prices in one output market affect demand (for \(\qquad\))
in other markets.
- Prices in output markets affect firms' demands for \(\qquad\) .
- Prices in input markets affect firms' costs and thus affect \(\qquad\) curves in output markets.

\section*{If all markets are in competitive} equilibrium, then...
- No excess demand or excess supply in any market.
- Price = \(\qquad\) in every market.
- No more opportunities for arbitrage.
- Everyone faces the same prices.
- Everyone's budget line has same \(\qquad\) .

Implications of competitive equilibrium (cont'd)
- Although everyone faces same prices, it is not true that everyone has same income.
- Slopes of budget lines are equal.
- But intercepts are
\(\qquad\) equal.

\section*{Adam Smith's (1776) claim}
"Every individual ... neither intends to promote the public interest, nor knows how much he is promoting it...
"He intends only his own security, his own gain.
"And he is in this ... led by an \(\qquad\)
to promote an end which was no part of his intention.
"By pursuing his own interest he frequently promotes that of society more effectually than when he really intends to promote it."

\section*{ECONOMY-WIDE EFFICIENCY}

\section*{Page 2}

\section*{Was Smith right?}

When people individually do the best they can with what they have, do they (inadvertently) "promote the interest of society" as a whole?
This slideshow breaks this down into two questions.
1. What needs to happen for a whole economy to be efficient?
2. Does perfect competition insure this result?

\section*{Requirement \#1: Efficiency in production}
- Economy must be on Food (not inside) the PP curve.
- Being "on the PP curve" means:
- Firms are not wasting inputs.
- Firms are the right size.

\section*{Does perfect competition ensure that firms are the right size?}

Example: Suppose the flash drive industry, consisting of two firms, must produce a total of 80 units of output. What is the cheapest way to do this?

\section*{Example: Allocating production across firms}

Suppose initially each firm produces 40 units of output. Is this the cheapest way to produce 80 units total? \(\qquad\) !

\section*{ECONOMY-WIDE EFFICIENCY}

Page 3

\section*{When are firms the "right size"?}
- How should total output be divided between firms to minimize total industry costs?
- Answer: Set output so that \(\qquad\)

\section*{Does perfect competition ensure that firms are the right size?}
- Do all firms in a perfectly competitive industry have the same value of MC?
- Answer: \(\qquad\) (inadvertently).
- Reason: All firms, seeking their "own gain" (profit) set their output levels so that their MCs are equal to the and thus to each other's MC.

\section*{Requirement \#2:}

Efficiency in consumption
- Goods must be distributed to consumers in an economically efficient way.
- The "right way" means:
- Any further exchange among consumers would make at least one consumer worse off.
- No potential gains from further trade among consumers.

\section*{ECONOMY-WIDE EFFICIENCY}

\section*{Page 4}

When are there NO potential gains from further trade among consumers?

Reminder: MRS = |slope| of indifference curve.

\section*{Does perfect competition ensure} efficiency in consumption?
- Under perfect competition, every consumer faces the same prices.
- Does every consumer have the same MRS?
- Answer: \(\qquad\) (inadvertently).
- Reason: All consumers, seeking their "own gain," choose combinations at \(\qquad\) with their budget lines, which are parallel.

\section*{How is the slope of the PP curve related to competitive prices?}
- It can be proved that |slope| of PP curve equals ratio of marginal costs:
- \(\mid\) Slope \(\mid=\mathrm{MC}_{\text {clothing }} / \mathrm{MC}_{\text {food }}\).
- Under perfect competition, MC \(=P\) in every industry, so:
- \(\mid\) Slope \(\mid=\mathrm{P}_{\text {clothing }} / \mathrm{P}_{\text {food }}\).

\section*{Economically efficient}
\(=\) no potential gains from further trade
- Efficiency does NOT require that everyone have equal income or the same bundle.
- Just requires |slopes| of indifference curves (MRSs) to be equal.
- Efficiency is different from fairness.

\section*{Requirement \#3: \\ Efficiency of output mix}
- The right combination of goods must be produced.
- That is, the right point on the PP curve must be chosen.

In a competitive economy, prices reflect true opportunity costs in production
- Suppose price of sweatshirts \(=\$ 25\) and price of shoes \(=\$ 75\).
- With sweatshirts on the vertical axis, slope of PP curve
\(=\) opp cost of shoes
\(=\)
\(=\)

ECONOMY-WIDE EFFICIENCY
Page 5

Conversely, opportunity costs in production determine prices
- Suppose opportunity cost of computer is two bicycles.
- Then 2 = price of computer / price of bicycle.
- If price of computer is \(\$ 500\), then price of bicycle is \(\qquad\)

What is the "right combination" of goods to produce?
- The "right combination" is where:
\(\left.\begin{array}{|c}\hline \begin{array}{c}\text { The rate of } \\ \text { tradeoff that } \\ \text { consumers want } \\ \text { to make }\end{array} \\ \hline\end{array} \quad \begin{array}{c}\text { The rate of } \\ \text { tradeoff that the } \\ \text { economy can } \\ \text { make }\end{array}\right]\)

\section*{Where is the "right point"} on the PP curye?
- MRS at everyone's chosen combinations of goods (slope of indiff. curve) = slope of PP curve.
- (Diagram shows case of one big consumer.)

In competitive equilibrium, slope of each consumer's budget line \(=\) slope of PP curve

Does perfect competition push the economy to the "right point" on the PP curve?
- Is |slope| of PP curve equal to every consumer's MRS (slope of indiff. curve)?
- Answer: \(\qquad\) (inadvertently).
- Reason: MRS
\(=\)
\(=\)
\(=\)

\section*{Competitive prices are signals}
- In a competitive economy, relative prices thus signal the true \(\qquad\) of each good.
- For example, if the competitive price of a computer is twice the price of a bicycle, then the economy's opportunity cost of a computer must be \(\qquad\) bicycles.

\section*{ECONOMY-WIDE EFFICIENCY}

Page 6

\section*{Competitive prices are signals}
- In a competitive economy, relative prices thus signal the true \(\qquad\) pportunity cost of each good.
- For example, if the competitive price of a computer is twice the price of a bicycle, then the economy's opportunity cost of a computer must be \(\quad 2\) bicycles.

Summary: competitive prices direct people toward efficient behavior

Although each consumer and firm "intends only his own gain," prices create incentives for
- each consumer to choose an \(\qquad\) combination of consumption goods.
- each firm to produce an amount of output using an efficient combination of inputs.

\section*{Competitive prices are Adam Smith's "invisible hand"}
- Assuming all markets in the economy are perfectly competitive, Smith was basically right.
- When people do the best they can with what they have, people (\(\qquad\) -) "promote the interest of society."

\section*{Conclusions}

Economy-wide perfect competition is efficient:
- Efficient in production: The economy operates (not inside) the PP curve.
- Efficient in consumption: Goods are distributed to consumers so that there are no potential
- Efficient in product mix: The right combination of goods is produced.

\section*{Monopoly: definition}
- Single seller in the market.
- Faces entire market demand curve.
- Cannot take price as given, must recognize that own output influences price.

\section*{Why monopolies exist}
- Barriers to entry by new firms.
- Legal barriers:

1. government franchise monopoly
2. patent monopoly
3. regulation such as FDA
- Technical barriers:
1. ownership of a unique resource
2. "natural" monopoly

Legal barriers:
(1) government franchise monopoly

Government sometimes permits only one firm in industry.
Historical examples:

Examples today:

Government franchise monopoly (cont'd)
- Why do governments grant franchises?
- Historically:
- Today:

\section*{Legal barriers:}
(2) patent monopoly
- In U.S., patent protection lasts for 20 years in most cases.
- Extremely important in some industries:
- Important in other industries:

\section*{MONOPOLY AND BARRIERS TO ENTRY}

Page 2

\section*{Patent monopoly (cont'd)}
- Why do governments provide patent protection?

Technical barriers:
(1) ownership of a unique resource
- If a particular resource is required to produce some good, then ownership of the resource confers monopoly power.
- Historical examples:
- Examples today:

Example of natural monopoly: suppose a total of 60 units of output must be produced
- If produced by 1 firm, \(\mathrm{AC}=\$\) \(\qquad\)
- If produced by 2 firms, \(\mathrm{AC}=\$\) \(\qquad\)
- If produced by 3 firms, \(\mathrm{AC}=\$\) \(\qquad\)

\section*{Is the software industry a natural monopoly?}
- Example: Suppose it costs
- \$100 million to develop a new word processing app.
- \(\$ 2\) per copy to register a customer and let them download the app.
- Then TC \(=\$ 100\) million +2 Q .
- So \(\mathrm{AC}=\) \(\qquad\) .

MONOPOLY AND BARRIERS TO ENTRY
Page 3

\section*{Implications of natural monopoly for society}
- Competition is unstable, because ___ firms can drive out \(\qquad\) firms.
- Competition may be undesirable, because society's total costs are minimized by having only producer.

\section*{Conclusions}
- A monopolist is a " \(\qquad\) .\("\)
- Monopolies arise because of
\(\qquad\) -
- Legal barriers include government franchises and patents.
- Technical barriers to entry include: ownership of a unique resource and _ monopoly (economies of scale).

\section*{MONOPOLY PRICING}

Page 1

\section*{MONOPOLY PRICING}
- How does a monopolist choose what quantity to produce and what price to charge?

\section*{The \(\mathrm{MR}=\mathrm{MC}\) rule again}
- ANY profitmaximizing firm chooses an output level Q that maximizes profits.

- General rule: set output so that marginal revenue \(=\) marginal cost.

Monopolist faces downwardsloping demand
- A monopolist can change the market price by changing its own quantity.
- It has "market power" (power over price).

It can raise price by decreasing output.
- Conversely, it must accept a lower price to increase output.

Revenue and marginal revenue when demand slopes down
- Total revenue = area of the rectangle under the demand curve.
- Marginal revenue = change in this area as output increases by one unit.

Like competitor, monopolist gets revenue from additional unit sold
- When a monopolist sells 1 more unit at price \(P\), revenue rises by P .

\section*{MONOPOLY PRICING}

Page 2

\section*{Unlike competitor, monopolist must cut price to increase sales}
- However, to sell that unit, monopolist must ___ price on existing sales: \(\Delta \mathrm{P}<0\).
- Thus revenue falls by quantity of existing sales (Q) times the price cut (\(\Delta \mathrm{P}\)): \(\mathrm{Q} \times \Delta \mathrm{P}<0\).

\section*{Thus for monopolist, marginal revenue \(<\) price}
- Thus MR from selling one more unit of output
\(=\mathrm{P}+(\mathrm{Q} \times \Delta \mathrm{P})\)
\(<\mathrm{P}\), since \(\Delta \mathrm{P}<0\).

\section*{Example 1}
- Suppose a vendor sells 4 corn dogs at price \(=\$ 3\). No other vendors nearby.
- If vendor cuts price to \(\$ 2.75\) it can sell one more (that is, 5 corn dogs).
- What is the vendor's marginal revenue? \(\$ 2.75\) ?

\section*{Example 1}
\(\mathrm{MR}=\mathrm{P}+\mathrm{Q} \times \Delta \mathrm{P}\)
\(=\$ 2.75+4 \times(-\$ 0.25)\)
\(=\$\) \(\qquad\)

\section*{Example 2 (cont'd)}
- Suppose a store is now selling 20 designer sweaters per day at \(\$ 100\) each.
- Only store selling this style.
- If it cuts price to \(\$ 99\), it can sell one more sweater (that is, 21 sweaters per day).
- What is the store's marginal revenue? \(\$ 99\) ?

\section*{Example 2}

\section*{MONOPOLY PRICING}

\section*{Page 3}

What if output rises by more (or less) than one full unit?
- Suppose output increases by \(\Delta \mathrm{Q}\).
- Then total revenue: rises by \(\Delta \mathrm{Q} \times \mathrm{P}\), falls by \(\mathrm{Q} \times \Delta \mathrm{P}\).
- \(\Delta \mathrm{TR}=\)
\(\Delta \mathrm{Q} \times \mathrm{P}+\mathrm{Q} \times \Delta \mathrm{P}\)

Marginal revenue when output rises by more (or less) than one unit

Marginal revenue
\(=\mathrm{MR}\)
\(=\frac{\Delta T R}{\Delta Q}\)
\(=\frac{\Delta Q \times P+Q \times \Delta P}{\Delta Q}\)

\section*{Marginal revenue curve for linear demand curve}
- Suppose demand is given by: \(\mathrm{P}=\mathrm{a}-\mathrm{bQ}\).
- \(\mathrm{MR}=P+Q \times \frac{\Delta P}{\Delta Q}\) \(=(a-b Q)+Q(-b)\)
\(=\mathrm{a}-2 \mathrm{bQ}\)
- Conclusion: MR has intercept but slope of demand curve.

Marginal revenue curve for linear demand curve: example 3
- Suppose demand is given by: \(\mathrm{P}=7-0.05 \mathrm{Q}\).
- Then

MR =

\section*{Using the \(\mathrm{MR}=\mathrm{MC}\) rule}
- To maximize profits, monopolist chooses \(\mathrm{Q}_{\mathrm{M}}\) so that \(\mathrm{MR}=\mathrm{MC}\).
- Chooses price \(\mathrm{P}_{\mathrm{M}}\) on demand curve.
- Why is \(\mathrm{P}_{\mathrm{M}}>\mathrm{MC}\) ?
\(\qquad\)

Q

\section*{MONOPOLY PRICING}

\section*{Page 4}

Choosing output and price: example 3
- Suppose MC is given by:
\(\mathrm{MC}=1+0.05 \mathrm{Q}\).
- What will monopolist do?
- Choose \(\mathrm{Q}_{\mathrm{M}}=\) \(\qquad\)

\section*{Monopoly profit}
- A monopoly's economic profit can persist indefinitely, because it is protected by \(\qquad\) .
- Monopoly profits sometimes called "monopoly rents."

\section*{Monopoly revenue and cost}
- Total revenue
\(=P_{M} \times Q_{M}\)
- Total cost
\(=\mathrm{AC}_{\mathrm{M}} \times \mathrm{Q}_{\mathrm{M}}\)
- Profit
\(=\) Total revenue -
Total cost

\section*{Computing revenue and cost: example \#3}
- Total revenue (TR)
\(=\mathrm{P}_{\mathrm{M}} \times \mathrm{Q}_{\mathrm{M}}\)
\(=\$ 5 \times 40\)
\(=\$\) \(\qquad\) -
- Total cost (TC)
\(=\mathrm{AC}_{\mathrm{M}} \times \mathrm{Q}_{\mathrm{M}}\)
\(=\$ 2 \times 40\)
\(=\$\) \(\qquad\) .

\section*{Computing profit: example \#3}
- Profit \(=T R-T C\)
= \$ \(\qquad\) .
- Alternatively, profit
\(=\left(\mathrm{P}_{\mathrm{M}}-\mathrm{AC}_{\mathrm{M}}\right) \times \mathrm{Q}_{\mathrm{M}}\)
\(=(5-2) \times 40\)
\(=\$\) \(\qquad\) -

\section*{Conclusions}
- Like a competitor, a monopolist chooses output so that \(\qquad\) \(=\mathrm{MC}\).
- But MR is \(\qquad\) than price for a monopolist because it faces downward-sloping demand.
- In particular, \(\mathrm{MR}=\mathrm{P}+\mathrm{Q}(\Delta \mathrm{P} / \Delta \mathrm{Q})\)
\[
=\mathrm{P}(1+1 / \varepsilon)<\mathrm{P} .
\]
- So unlike a competitor, a monopolist sets price MC and enjoys positive economic \(\overline{\text { profit even in }}\) the long run.

WELFARE ANALYSIS OF MONOPOLY
Page 1

\section*{WELFARE ANALYSIS OF MONOPOLY}
- What's wrong with monopoly?

\section*{What's wrong with monopoly?}
- "Monopoly" has negative connotations in most people's minds.
- Noneconomic arguments against monopoly are often vague and inconsistent.
- Goal here is to clarify economic arguments against monopoly.

\section*{Economic arguments against monopoly}
- Argument: Because price is greater than marginal cost, some welfare (potential gains from trade) is lost.
- Monopolies are not
\(\qquad\) .

Noneconomic arguments against monopoly
- Argument: Big is bad. - Weakness: \(\qquad\)
A monopolist sets price MC.
- A monopolist enjoys positive economic profit even in the long run because it is protected by barriers to \(\qquad\) .

- Argument:

Concentration of power is bad for society.
- Argument: Bad for income distribution.
- Weakness. \(\qquad\)
- Weakness: \(\qquad\)
\(\qquad\)

Measuring loss of social welfare (deadweight loss)
- Deadweight loss = loss of potential gains from trade.
\(=\) area between demand and MC curves from \(\mathrm{Q}_{\mathrm{M}}\) to \(\mathrm{Q}^{*}\).

\section*{Measuring deadweight loss:} example \#3 again
- Choose \(\mathrm{Q}_{\mathrm{M}}\) where \(\mathrm{MR}=\mathrm{MC}\) and \(\mathrm{P}_{\mathrm{M}}\) on demand curve.
- \(\mathrm{Q}_{\mathrm{M}}=\) \(\qquad\) .
- \(\mathrm{P}_{\mathrm{M}}=\) \(\qquad\) -.
- But Q* \(=\) \(\qquad\) .
- Deadweight loss \(=\) \$ \(\qquad\) _.

\section*{More economic arguments against monopoly}
- Argument: Barriers to entry may reduce incentives for efficiency (e.g., cost minimization).
- Argument: May encourage rent-seeking behavior.
- DEF: Rent-seeking = devotion of resources to erect barriers to entry.

An economic argument in favor of monopoly
- Argument: Monopolist may have greater incentive than a competitor to develop lower-cost methods of production (Joseph Schumpeter*).
- Possible example:
- But evidence for greater technical innovation is weak at best.

\section*{Conclusions}
- While noneconomists often have numerous arguments against monopoly, these are often vague and inconsistent.
- Economists have a specific argument:
\(\qquad\) from pricing
\(\qquad\) marginal cost.
- Additional economic arguments include loss of technical efficiency and \(\qquad\) behavior.

\section*{Page 1}

- What is "price discrimination"?
- What are its impacts on individual consumers and social welfare?

Example: What price could you charge each customer?

\section*{Price discrimination: general definition}
- Charging multiple prices (for reasons unrelated to costs) in order to increase profits.
- Types of price discrimination:
- perfect price discrimination.
- market segmentation.

\section*{What if you could charge different prices to each customer?}
- You would NOT have to cut price on all customers to increase sales.

\section*{Price discrimination:} general requirements
(1) Market power (power over price).
- Why important:
(2) Ability to prevent arbitrage between customers.
- Why important:

\section*{MONOPOLY PRICE DISCRIMINATION}

\section*{Page 2}

\section*{Perfect price discrimination: definition}
- Monopolist charges a different price for every unit sold.
- Each unit is charged the consumer's willingness-to-pay.
- Marginal revenue curve = \(\qquad\)

Pricing with perfect price discrimination: example 3 again
- Suppose monopolist could charge everyone a different price.
- Quantity sold =
- Highest price =
\(\qquad\)
- Lowest price \(=\) \(\qquad\)

\section*{Perfect price discrimination:} how much is sold?
- Serves all customers willing to pay at least the marginal cost of production.
- Entire gains from trade captured by monopolist.

Revenue and profit with perfect price discrimination: example 3 again
- Revenue = area under demand curve = \$ \(\qquad\) .
- Total cost \(=\)
\(=\) output \(\times \mathrm{AC}\)
= \$
- Profit = revenue total cost \(=\$\)
- Consumer surplus = \$ \(\qquad\) .

\section*{But perfect price discrimination is impractical}
- Monopolist must know the maximum that each buyer is willing to pay for each unit.
- Are buyers likely to reveal this information?
- Most that monopolist knows (usually) is the price-sensitivity (elasticity) of different market segments.

\section*{Welfare analysis of perfect price discrimination}
- Monopolist serves all customers willing to pay at least the marginal cost of production.
- Thus there is no deadweight loss!
- Output is \(\qquad\) as under competition.
- But seller gets all the gains from trade.
- Consumer surplus is \(\qquad\) .
\(\square\)

\section*{MONOPOLY PRICE DISCRIMINATION}

\section*{Page 3}

\section*{Market segmentation: definition}
- Charging a different price to each market segment.
- Suppose elasticities differ across segments.
- To maximize profits, set each segment's price so that its own \(M R=M C\).

\section*{Pricing and elasticity}
- We previously showed that for any monopolist, \(M R=P\left(1+\frac{1}{\varepsilon}\right)\).
- Setting MR=MC gives \(M C=P\left(1+\frac{1}{\varepsilon}\right)\).
- Solving for P gives a rule for monopoly pricing: \(P=\)

\section*{Different elasticities \(\rightarrow\) different prices}
- Suppose different market segments have different elasticities of demand \((\varepsilon)\).
- To maximize profit, monopolist should set different prices according to \(\varepsilon\), even if MC is the same.
- Market segment with most elastic demand should get \(\qquad\) price.

\section*{Market segmentation: example}
- Consider a symphony orchestra or a theatre.
- Suppose MC of seat \(=\$ 10\), general public's \(\varepsilon=-2\), and students' \(\varepsilon=-5\).
- To maximize profits, should set:
- Price for general public \(=\frac{10}{\left(1+\frac{1}{-2}\right)}=\$\) \(\qquad\) .
- Price for students \(=\frac{10}{\left(1+\frac{1}{-5}\right)}=\$\) \(\qquad\) -

\section*{How market-segmenting price discrimination works}
- Customers with more elastic demand are more sensitive to price, perhaps because have close substitutes available. They get
\(\qquad\) price.
- Customers with less elastic demand are less sensitive to price, perhaps because have no close substitutes. They get \(\qquad\) . price.

\section*{Market-segmenting price} discrimination in the real world
- Movie theaters and performing arts:
- Airlines:
- Supermarket products:

\section*{MONOPOLY PRICE DISCRIMINATION}

Page 4

\section*{Conclusions}
- Price discrimination means charging multiple prices to maximize profits.
- Price discrimination always yields \(\qquad\) profits for monopolist.
- With market-segmenting price discrimination, customers with less elastic (price-sensitive) demand pay a \(\qquad\) price.
- However, price discrimination is not necessarily worse for society than ordinary monopoly.

\section*{Ways to form a monopoly}
(1) Get government to set up entry barriers, excluding all other firms.
- Examples:
(2) Merge with other firms in same industry.
- Examples:
(3) Form a cartel, an agreement with other firms in same industry to raise price.

\section*{The ideal cartel: how to maximize total cartel profits}
- Divide total output so that every member firm has same \(\qquad\) .
- Then cartel MC curve is same as competitive supply curve.
- Set total output \(\mathrm{Q}^{* *}\) where
\(\mathrm{MR}=\) cartel MC.

\section*{Tasks facing a cartel}
- Choose level of total cartel output \(\mathrm{Q}^{* *}<\mathrm{Q}^{*}\).
- Divide this total output among cartel's member firms.
- Each member assigned an output quota \(\mathrm{q}^{* *}\).

\section*{The ideal cartel: consequences} for society
Deadweight loss \(=\) area between demand and cartel MC curves from cartel output to sociallyoptimal output.

\section*{Internal pressures facing a cartel}
- Cartels are bad for society because they set prices \(\qquad\) marginal cost, causing deadweight loss.
- But need we fear them?
- Many cartels fall apart by themselves.
- Why?

\section*{Members' incentives to cheat}

Now \(\mathrm{P}^{* *}>\mathrm{MC}\) for every member.
Every member has incentive to:
- cut price slightly (if necessary),
- produce more than its quota (\(\mathrm{q}^{* *}\)).

\section*{Enforcement}
- Cartels need an enforcement mechanism to make sure every member sticks to its quota.
- In U.S., cartel agreements not enforceable in courts and are usually \(\qquad\) under "antitrust" laws.

\section*{Antitrust laws: definition}
- Laws that prohibit forming monopolies through mergers, cartels, or certain other actions.
- Name refers to "trusts," a kind of merger briefly popular in the U.S. in the late 19th century.

\section*{The U.S.'s Sherman Act of 1890}

Prohibits:
- Any "contract, combination, ... or conspiracy, in restraint of trade or commerce" [Section 1]
- Any action to "monopolize, or attempt to monopolize, or combine or conspire with any other person or persons to monopolize" any "trade or commerce" [Section 2]

\section*{What is illegal under the Sherman Act?}
- Forming a cartel? \(\qquad\)
- Merging with other firms in the industry?
- Predatory pricing (setting price below cost to drive a competitor out of business)? \(\qquad\) _
- Having large market share? \(\qquad\)

Other major U.S. antitrust laws
- Clayton Act of 1914
- strengthened restrictions on mergers.
- prohibited price discrimination.
- forbade practices that "lessen competition."
- Federal Trade Commission Act of 1914
- prohibited "unfair methods of competition in commerce, and unfair or deceptive acts or practices of commerce."

\section*{Price-fixing}
- Making an agreement with other firms to raise prices is called price-fixing.
- Recent U.S. antitrust prosecutions for pricefixing can be found at https://www.justice.gov/atr/antitrust-casefilings (check the box for "price fixinghorizontal").

\section*{Conclusions}
- Monopolies can be formed by \(\qquad\) or \(\qquad\) -.
- But cartel members always have an incentive to cheat by cutting price and producing more output than their quotas.
- U.S. \(\qquad\) law prohibits forming monopolies by mergers or cartels, and forbids some other kinds of behavior "in restraint of trade."

\section*{OLIGOPOLY \\ Page 1}

\section*{Oligopoly: definition}
- Small number of sellers:
"highly concentrated."
- Reason: some barriers to entry.
- Examples of oligopoly markets:
- Aluminum: \(\qquad\) .
- Processor chips for personal computers:
- Soft drinks: \(\qquad\) .

\section*{Oligopoly models}
- There are many models that try to predict how markets work with a small number of sellers.
- All models assume each firm sets price to maximize \(\qquad\) .
- But you cannot figure out where to set your price unless you make a guess (or conjecture) about what your \(\qquad\) will do.
- Models differ in what firms are assumed to conjecture about their rivals' behavior.

\section*{(2) Price competition model}
- Key assumption: Each firm conjectures that its rivals will keep their \(\qquad\) constant.
- So if their price is greater than your marginal cost, your best strategy is to \(\qquad\) your rivals slightly and increase your market share.
- If their price is equal to your marginal cost, your best strategy is to keep your price equal to marginal cost.

\section*{(2) Price competition: equilibrium}
- If price is greater than marginal cost, firms keep undercutting each other, lowering the price.
- In equilibrium, price =
- Outcome is
\(\square\) . (no DWL).

\section*{OLIGOPOLY}

\section*{Page 2}

\section*{(3) Cournot model}
- Key assumption: Each firm assumes that its rivals will keep their output constant.
- Each firm's demand curve is whatever is left over.

\section*{(3) Cournot model (cont'd)}
- Best strategy is to act like a monopolist on your "leftover" demand curve.
- Choose your output where your MC equals your MR.
- Set price above your MC.

(3) Cournot model: equilibrium
(cont'd)
- Suppose \(\varepsilon=\) market elasticity of demand and \(n=\) number of firms in the industry.
- Also assume all firms have same costs.
- It can be shown (using calculus) that the \% markup of price over marginal cost will be:
\[
\frac{P-M C}{P}=\frac{1}{|\varepsilon| n}
\]

\section*{(3) Cournot model}

Your rivals'
- Key assumption: Each firm assumes that its rivals will keep their output quantity constant.
- Each firm's demand curve is whatever is left over.

\section*{(3) Cournot model : equilibrium}
- Can be proven that equilibrium lies on demand curve _ cartel and price competition.
- Exact price depends on elasticity of demand and number of firms.
- Some DWL.

\section*{(3) Cournot model: equilibrium}
(cont'd)
- Example: Suppose an industry has 3 firms and the market elasticity of demand is -2 . Then the Cournot model predicts that the \% markup will be (1/6) or about \(\qquad\) -
- If the same industry has 10 firms, then the \(\%\) markup will fall to \((1 / 20)\) or \(\qquad\) .
- Markup is lower, the \(\qquad\) firms in the industry and the \(\qquad\) elastic demand.

\section*{OLIGOPOLY}

Page 3

- Oligopoly means a market with \(\qquad\) sellers.
- All models assume firms maximize profit, but differ in what firms conjecture about their rivals.
- Price competition model predicts price will
___ marginal cost, despite few sellers.
- Cournot model predicts price will be than marginal cost, but less than the monopoly (or cartel) price.

\section*{Conclusions}

\section*{MONOPOLISTIC COMPETITION \\ Page 1}

\section*{MONOPOLISTIC COMPETITION}
- What happens if firms face competitors producing somewhat different products?

\section*{What is "monopolistic} competition"?
- A hybrid model combining elements from monopoly and competitive models.
- Like \(\qquad\) , each firm has market power (downward-sloping demand) due to product differentiation.
- Like \(\qquad\) , there is free entry, which drives profit to zero in the long run.

\section*{Differentiated products: definition}
- Products produced by different firms that are good, but not perfect substitutes in the eyes of consumers.
- Each firm's product is a little bit unique.
- Examples:

Why products may not be perfect substitutes
- Differences in style, design, flavor.
- Differences in quality.
- Differences in location.

\section*{Example of differentiation by location}
- Suppose ice-cream stands are positioned at intervals along a beach.
- Sunbathers scattered continuously.
- No one likes walking on the hot sand.

\section*{Example of differentiated products (cont'd)}
- Ice-cream stands are therefore
\(\qquad\) by location.
- If the prices are equal, each sunbather buys ice cream from the \(\qquad\) stand.

\section*{MONOPOLISTIC COMPETITION \\ Page 2}

\section*{Example of differentiated products (cont'd)}
- If the stand on the left raised its price above its rival's, would it lose all its customers, as under perfect competition?

\section*{Consequences of differentiated products}
- Each firm faces downward-sloping demand: the higher its price, the \(\qquad\) its customers.
- But the position of its demand curve depends on availability and prices of other firms' products.

\section*{Pricing with differentiated products}
- Like ordinary monopolist, firm chooses \(q^{*}\) so that MC=MR.
- Sets P* above MC.

\section*{Profits in the short run}
- In short run, firm might earn positive profits.
- Positive profits are possible when demand curve is anywhere higher than AC curve.

\section*{Free entry}
- Many industries have few barriers to entry.
- Entry occurs whenever there are opportunities to make \(\qquad\) economic profits.

\section*{Effects of entry}
- New firms enter, producing close substitutes.
- New firms take away business from existing firm.
- Existing firm's demand and MR curves fall toward the origin.

\section*{MONOPOLISTIC COMPETITION \\ Page 3}

\section*{Profits in the long run}
- Entry stops only when p there are no more opportunities for positive profits.
- Occurs when firm's demand is \(\qquad\) to its AC curve.
- \(\mathrm{p}^{* *}=\mathrm{AC}\), so profit \(=\) \(\left(\mathrm{p}^{* *} \mathrm{q}^{* *}\right)-\left(\mathrm{AC} \mathrm{q}{ }^{* *}\right)=0\).

"Excess capacity": general definition
- Producing at an output level where \(A C\) is falling.
- MC \(\qquad\) AC.
- A firm with excess capacity could reduce its average cost by increasing output.

Is there "excess capacity" under perfect competition?
- Under perfect competition, entry also stops when firm's demand is tangent to its AC curve.
- But firm's demand is
\(\qquad\) because
all firms produce perfect substitutes.
- \(\qquad\) excess capacity.

\section*{"Excess capacity" under monopolistic competition}
- Why does long-run equilibrium imply excess capacity in this model?
- Because AC is demand, and demand slopes \(\qquad\) .

\section*{Too many small firms?}
- Monopolistic competition seems to yield too many small firms, each with excess capacity.
- So total industry costs could be reduced by limiting the number of firms in the industry.
- Would this be a good idea? \(\qquad\) .
- We would lose variety because products are

\section*{MONOPOLISTIC COMPETITION}

Page 4

\section*{Conclusions}
- When firms produce products but entry is free, monopolistic competition results.
- Price \(\qquad\) marginal cost, but in the long run, firms earn \(\qquad\) profits.
- In the long run, all firms produce where the firm's demand curve is \(\qquad\) to average cost.

\section*{PART 5}

\section*{Public Goods and Externalities}

Big ideas: Markets fail to work efficiently when third parties are affected-pollution is a classic example-or when many people consume the same item simultaneously.

Famous quote: "In general industrialists are interested, not in the social, but only in the private, net product of their operations."
-- Arthur C. Pigou, The Economics of Welfare (1920)

NONRIVAL GOODS
Page 1

- What are nonrival goods?
- Why do nonrival goods require coordination among people?
- Why do nonrival goods lead to market failure?

If good is consumed by more than one person, must SUM the benefits, coordinate purchase

\section*{Nonrival good: definition}
- A good whose consumption by one person does not necessarily preclude consumption by another.
- Synonym: public good.

\section*{Rival versus nonrival goods}
- For rival goods, only one person benefits from the good.
- Examples:

Rival versus nonrival goods (cont'd)
- For nonrival goods, several persons can enjoy the good simultaneously.
- Examples:

NONRIVAL GOODS
Page 2

\section*{Ideas and inventions are} nonrival goods
- "He who receives an idea from me, receives instruction himself without lessening mine; as he who lights his taper at mine, receives light without darkening me."
--Thomas Jefferson (1813)

\section*{Deciding whether to produce a nonrival good}
- Since many people can enjoy a nonrival good without interfering with each other, must up the benefits enjoyed by everyone.
- Compare with cost.

\section*{Deciding whether to produce a nonrival good: bigger example}
- Suppose 200 people live near a proposed park. Each is willing to pay \(\$ 300\) for the park. The park costs \(\$ 20,000\) to build.
- Would any one person pay for the park?
- Should the park be built?
\(\qquad\)

\section*{Example: Cable TV choices}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Example: Cable TV choices} \\
\hline & & \multicolumn{2}{|l|}{Willingness to pay} & & \multicolumn{2}{|l|}{Marginal benefit} \\
\hline Cable TV package & Total cost & You & \begin{tabular}{l}
Room \\
mate
\end{tabular} & MC & You & \begin{tabular}{l}
Room \\
mate
\end{tabular} \\
\hline Basic & \$30 & \$20 & \$25 & & & \\
\hline Standard & \$60 & \$30 & \$50 & & & \\
\hline Premium & \$90 & \$40 & \$60 & & & \\
\hline Deluxe & \$120 & \$45 & \$65 & & & \\
\hline
\end{tabular}

\section*{A how much decision}
- Suppose you and your roommate both want cable TV service, which you can easily share.
- More channels cost more.
- So how many channels should you get?

If good is consumed by more than one person, must SUM their marginal benefits, coordinate purchase
Without coordination: no cable TV

NONRIVAL GOODS
Page 3

Two dimensions of nonrival goods

Number of people served (n) Amount produced (Q)

\section*{Deciding how much \((\mathrm{Q})\) of a nonrival good to produce}
- Suppose the government plans to produce the nonrival good.
- Examples: \(\qquad\)
- But how much \((\mathrm{Q})\) should be produced?

\section*{Marginal cost of Q for a nonrival good}

Marginal cost of Q is typically positive:
- Public TV shows.
- Miles of highway.

\section*{Marginal social benefit of Q}
for a nonrival good
MSB = vertical sum of MBs of everyone who would enjoy the good:
- MBs of everyone who would watch a public TV show.
- MBs of everyone who might use a highway.

\section*{Optimal \(\mathrm{Q}^{*}\) is where \(\mathrm{MC}=\mathrm{MSB}\)}
- Social optimum \(=\mathrm{Q}^{*}\), where \(\mathrm{MSB}=\mathrm{MC}_{\mathrm{Q}}\).
- Typically, Q* is far greater than quantity demanded by any individual person.

NONRIVAL GOODS
Page 4

\section*{Deciding how much \((\mathrm{Q})\) of a} nonrival good to produce: example
- Suppose 2000 people live near proposed bike trail.
- Suppose a typical individual person's benefit from these bike trail is
\[
\mathrm{MB}=50-5 \mathrm{Q},
\]
where \(\mathrm{Q}=\) miles of trail.

Deciding how much \((\mathrm{Q})\) of a nonrival good to produce: example (cont'd)
- Now suppose marginal cost of building trail is \(\$ 30,000\) per mile.
- How much would any one person be willing to build for themselves?
- \(\mathrm{Q}=\) \(\qquad\)

Deciding how much \((\mathrm{Q})\) of a nonrival good to produce: example (cont'd)
- But many people can enjoy the trail simultaneously.
- So
sum the MB curves of the other people who would also enjoy the bike trail.

Deciding how much \((\mathrm{Q})\) of a nonrival good to produce: example (cont'd)
\(\mathrm{MSB}=\) sum of MBs for
all 2000 people
\(=2000 \mathrm{MB}\)
\(=2000(50-5 \mathrm{Q})\)
\(=\) \(\qquad\) -.

Deciding how much \((\mathrm{Q})\) of a nonrival good to produce: example (cont'd)
- Recall \(\mathrm{MC}_{\mathrm{Q}}=\$ 30,000\) per mile.
- Social optimum at \(\mathrm{MSB}=\mathrm{MC}_{\mathrm{Q}}\), or 100,000-10,000 Q \(=30,000\).
- Solve to get Q* \(=\) \(\qquad\) .

\section*{Paying for nonrival goods}
- There is \(\qquad\) marginal cost of allowing additional people to enjoy a nonrival good like a park or a road \(\left(\mathrm{MC}_{\mathrm{n}}\right)\).
- But there IS a cost of producing the nonrival \(\operatorname{good}\left(\mathrm{MC}_{\mathrm{Q}}>0\right)\).
- How to pay for \(i t\) ?

NONRIVAL GOODS
Page 5

\section*{Marginal cost pricing means no revenue!}
- To maximize social welfare, no one should be excluded who enjoys any benefit from the good.
- Welfare is maximized when price \(=\mathrm{MC}_{\mathrm{n}}=\)
\(\qquad\)

\section*{Production of a nonrival good by a private firm}
- Extreme case of natural monopoly.
- If produced by private firm, a monopoly price will be charged and too few customers will be served.
- Deadweight loss occurs.

Why there is market failure with nonrival goods
- Marginal-cost pricing \((\mathrm{P}=\$ 0)\) would increase the number of people served and maximize social welfare.
- But a zero price cannot cover
\(\qquad\) costs.
- So private firm is forced to price nonrival goods too high and therefore too few people (n) enjoy them.

\section*{A role for government coordination}
- Government could produce the good and give it away for free, since \(\mathrm{MC}_{\mathrm{n}}=\) \(\qquad\) .
- Examples: most roads, public television shows, and some museums are produced by government and are \(\qquad\) .
- But government must decide how much to produce \((\mathrm{Q})\) because \(\mathrm{MC}_{\mathrm{Q}}\) is NOT zero.

\section*{Determining optimal quantity \(\mathrm{Q}^{*}\) in real world (hard!)}
- Suppose good is produced by the gov't, which then gives it away free.
- Government's tasks:
- find out the individual MB curves somehow (surveys?).
- sum them to find MSB.
- produce \(\mathrm{Q}^{*}\), where \(\mathrm{MC}_{\mathrm{Q}}=\) MSB.
- recover costs somehow (taxes?).

Contrast with private goods: no coordination required and no market failure
- MSB for private goods is exactly the market demand curve.
- Consumers reveal their willingness-topay by their purchases.
- Market produces sociallyoptimal quantity in equilibrium.

\section*{NONRIVAL GOODS}

Page 6

\section*{Conclusions}
- A nonrival good can be enjoyed by many people simultaneously.
- Without coordination, too few nonrival goods are produced.
- Marginal social benefit of nonrival good =
\(\qquad\) sum of all persons' MB curves.
- The socially-optimal quantity of a nonrival good is the quantity where \(\qquad\) \(=\mathrm{MC}_{\mathrm{Q}}\).

Nonexcludable good: definition
- A good no one can be excluded from consuming.
- Synonym: nonexclusive good.

\section*{Examples of excludable goods}
- For excludable goods, each person who uses the good can be forced to pay for it.
- Examples:
- \(\qquad\)
- \(\qquad\)
-
\(\qquad\)
- \(\qquad\)

\section*{Examples of nonexcludable goods}
- For nonexcludable goods, no one who uses the good can be forced to pay for it.
- Examples:
- \(\qquad\)
- \(\qquad\)
-
.
-
\(\qquad\)

\section*{The "free-rider" problem}
- Nonexcludable goods cannot be priced, because it is not possible to prevent anyone from consuming them.
- If the good or service is already available, no one has any incentive to pay for it, since they can "ride for free."

Who will produce nonexcludable goods?
- \(\qquad\) has any incentive to produce nonexcludable goods (except for their own use).
- If the good is a rival nonexcludable good, the producer may not even get to enjoy it before other people use it up!
- What's the problem? are unclear or unenforceable.

\title{
NONEXCLUDABLE GOODS AND COMMON RESOURCES \\ Page 2
}

\section*{Common resources: definition}
- So-called "common resources" are
\(\qquad\) but \(\qquad\) goods.
- Since a rival good, if anyone uses a common resource, less of the resource is available for others.
- Since nonexcludable, \(\qquad\) can be prevented from using it.

\author{

}

\section*{Example 1: highway congestion}
- Consider a congested freeway.
- Suppose an individual driver who enters the freeway saves 10 minutes of travel time.
- But if the freeway is congested, the driver will slow \(\qquad\) down.
- Suppose 50 other drivers lose 30 seconds of travel time if this driver enters the freeway.

Example 1: private versus social benefit
- Marginal \(\qquad\) benefit
= savings in driver's own travel time
\(=+10\) minutes.
- Marginal \(\qquad\) benefit
\(=\) total savings in everyone's travel time
\(=+10\) minutes \(-(50 \times 0.5\) minutes \()\)
\(=\) \(\qquad\) .

\section*{Market failure leads to inefficiency}
- Net loss in travel time.
- Bad for society if more drivers enter freeway.
- But each driver cares only about \(\qquad\) benefit, not social benefit, so driver enters anyway.

NONEXCLUDABLE GOODS AND COMMON RESOURCES
Page 3

Policy options to limit use of common resources
1. Quantity restrictions: quotas, licenses, etc.
- Examples: \(\qquad\)
2. Artificial prices: taxes or fees based on usage.
- Examples: \(\qquad\)
3. Improved definition of property rights: conversion to (excludable) private property.
- Examples: \(\qquad\)

\section*{Conclusions}
- A nonexcludable good is one that people cannot be prevented from consuming.
- It creates a " \(\qquad\) problem."
- If the good is also a rival good, it will be common resources
- Policy options include quantity restrictions, artificial prices, or better-defined property rights.

\section*{Other examples of common resources}

\section*{Can people solve common-resource problems without government?}
- Elinor Ostrom showed that often they do.
- Her research showed that resource users often organize themselves to limit overuse, contribute toward nonexcludable goods, and sanction free riders.
- "More cooperation occurs than predicted" by conventional theory.

Ostrom, E. (2010). Nobel lecture: Beyond markets and states: polycentric governance of complex economic systems. American Economic Review, 100(3), 641-672

PURE PUBLIC GOODS
Page 1

\section*{PURE PUBLIC GOODS}
- Can a good be both nonrival and nonexcludable?

Nonrival and nonexcludable goods (review)
\begin{tabular}{|c|c|c|}
\hline & Rival or \\
nonrival? & Excludable or \\
nonexcludable? \\
\hline
\end{tabular}

Hamburgers
Broadcast TV
Websites
Deep ocean
fisheries

\section*{Pure public goods: definition}
- A pure public good is both nonrival and nonexcludable.
- Examples:

But not everything the government produces is a "public good" in the economic sense
\begin{tabular}{|c|c|c|}
\hline Rival or \\
nonrival?
\end{tabular} \begin{tabular}{c}
Excludable or \\
nonexcludable? \\
\hline
\end{tabular}

Public bus
service
Public
education
Trash
collection

\section*{Pure public goods: market failure}
- Since nonrival, socially optimal price \(=\$ 0\).
- No one \(\qquad\) be excluded.
- Since nonexcludable, cannot be priced.
- No one \(\qquad\) be excluded.
- Thus, pure public goods generally will hardly be supplied at all by the private sector, because of "free-rider" problem.

\section*{Example: pothole repair}
- Suppose 100 people drive frequently on a street.
- Street has a big pothole, which costs each person an average of \(\$ 100\) in car repair.
- Social benefit of fixing pothole \(=\$\) \(\qquad\) .
- Suppose it costs \(\$ 500\) to fix.
- Should the pothole be fixed?
- Will anyone want to fix pothole?
- How will it get fixed?

\section*{PURE PUBLIC GOODS}

\section*{Page 2}

\section*{Example: building parks}
- Suppose 50 households live near a vacant lot.
- If the lot were developed into a park, it would be worth about \(\$ 1000\) to each household.
- Social benefit of park \(=\$\)
- Suppose it costs \(\$ 20,000\) to build.
- Should the park be built? \(\qquad\) -.
- Will anyone want to build it? \(\qquad\) .
- How will the park be built?

\section*{Pure public goods: policy options}

Pure public goods unlikely to be produced without government involvement, such as...
1. Public production, funded by general tax revenues.
2. Subsidized private production, funded by general tax revenues.
3. Mandatory production.

Pure public goods: why we need taxes
- Earlier we showed that taxes reduce CS and PS by more than the tax revenue raised.
- Thus taxes create
- So why do we need taxes?
- One reason: to pay for pure public goods.

Public versus private goods: classification

\section*{Excludable \\ Nonexcludable}

Rival

Nonrival

\section*{Conclusions}
- Pure public goods are both nonrival and nonexcludable.
- Both of these qualities create market
\(\qquad\) .
- Pure public goods are hardly produced at all by profit-maximizing firms.
- So governments often pay for pure public goods with tax money.

\section*{EXTERNAL COSTS AND BENEFITS}

\section*{Page 1}

\section*{EXTERNAL COSTS AND BENEFITS}
- What happens if a good generates costs or benefits to third parties?

\section*{Private versus external costs}
- Private cost = cost of producing a good that is paid by the firm that produces and sells it. Reflected in \(\qquad\) curve.
- Sometimes producing (or consuming) a good imposes costs on people other than those who produce and consume it.
- External cost \(=\) cost to these other people. Also called \(\qquad\) .

\section*{Social cost}
- Social cost
= total costs of a good to society,
\(=\) private cost + external cost.
- External cost = amount that other people (not buyers or sellers) would be willing to pay to prevent the good from being produced.
- But they never get the opportunity.

Supply \(=\) marginal cost for sellers
- Height of supply curve \(P\) = minimum price that sellers must be paid to supply the last unit.
- Until now we have assumed that the cost of production is borne only by sellers.

\section*{Examples of external costs}
- Generating electricity from coal imposes:
- Driving a car imposes:

- Other examples:

\section*{Marginal social cost}
- Marginal private cost = additional cost to sellers from producing one more unit of output. Same as \(\qquad\) curve.
- Marginal external cost = additional cost, to people other than buyers and sellers, of producing one more unit of output.
- Marginal social cost \(=\) marginal private cost + marginal \(\qquad\) cost.

\section*{EXTERNAL COSTS AND BENEFITS}

\section*{Page 2}

\section*{Marginal social cost versus marginal private cost}
- MSC = MPC + MEC.
- If there are many sellers, MPC curve is same as competitive supply curve.

\section*{Marginal social cost of coal}
- Estimates of the marginal social cost of coal vary widely, but are typically roughly twice the market price of coal (which is about \(\$ 100\) per ton).

\section*{Why the market fails}
- We do not have
- Market price reflects only marginal private cost, not marginal social cost.
- Deadweight loss = difference between MB and MSC for each unit of output produced from \(\mathrm{Q}^{*}\) to Q**.
- Equals loss to society from producing too

- \(\operatorname{MSC}=\) MPC + MEC .
- MB = demand curve.
- Economically efficient level of output \(=\) Q* \(^{*}\).
- Actual level of output \(=\mathrm{Q}^{* *}\).

\section*{Deadweight social loss from a} external cost
\(\qquad\) -.

\section*{Demand = marginal benefit for buyers}
- Height of demand curve \(=\) maximum price that buyers are willing to pay for the last unit.
- Until now we have assumed that benefit is enjoyed only by buyers.

\section*{EXTERNAL COSTS AND BENEFITS}

\section*{Page 3}

\section*{Private versus external benefits}
- Private benefit = benefit of consuming a good that is enjoyed by the person who buys it. Reflected in \(\qquad\) curve.
- Sometimes producing (or consuming) a good creates benefits for people other than those who produce and consume it.
- External benefit = benefit to these other people. Also called \(\qquad\) externality.

\section*{Social benefit}
- Social benefit
= total benefit of a good to society,
\(=\) private benefit + external benefit.
- External benefit = amount that other people (not buyers or sellers) would be willing to pay to have the good produced.
- But they never get the opportunity.

\section*{Examples of external benefits}
- Obtaining a vaccination creates:
- Scientific research creates:
- Landscaping, mosquito control creates:
- Other examples:

\section*{Marginal social benefit}
- Marginal private benefit = additional benefit to buyers from one more unit of output. Same as \(\qquad\) curve.
- Marginal external benefit = additional benefit, to people other than buyers and sellers, from one more unit of output.
- Marginal social benefit = marginal private benefit + marginal \(\qquad\) benefit.

\section*{Marginal social benefit from flu vaccinations}
- A recent paper estimated the marginal social benefit of a vaccination includes at least \(\$ 63\) from reduced mortality and \$87 from reduced work absences.

\section*{Marginal social benefit versus marginal private benefit}
- \(\operatorname{MSB}=\mathrm{MPB}+\mathrm{MEB}\).
- If there are many buyers, MPB curve is same as competitive demand curve.

\section*{EXTERNAL COSTS AND BENEFITS}

Page 4

\section*{Market failure with an external benefit: too little is produced}
- MSB = MPB + MEB.
- Economically efficient level of output = Q*
- Actual level of output \(=\mathrm{Q}^{* *}\)

\section*{Deadweight social loss from an external benefit}
- Deadweight loss = difference between MC and MSB for each unit of output not produced from Q** to Q*. \(^{*}\).
- Equals loss to society from producing too
\(\qquad\) .

\section*{Conclusions}
- If a good (such as pollution) generates an external cost, then too \(\qquad\) will be produced compared to the economically-efficient quantity.
- If a good (such as vaccinations) generates an external benefit, then too will be produced compared to the economically-efficient quantity.

\section*{Page 1}

\section*{REGULATING PRODUCTS THAT CAUSE POLLUTION}
- How can products that cause pollution be regulated efficiently?

\section*{Some goods create external costs}
- Goods like coal generate external costs.
- The burning of coal inevitably generates \(\mathrm{CO}_{2}\), a greenhouse gas, which creates costs for other people.
- Too much coal is produced by a private market because buyers and sellers
\(\qquad\) the costs of coal that are imposed on others.

\section*{Consequences of external costs}
- Sellers and buyers ignore external costs (such as pollution).
- Actual output is at intersection of marginal private cost and marginal benefit.
- There is deadweight loss.

\section*{Voluntary solution}
- How can this problem be resolved?
- Perhaps sellers of polluting products could be persuaded to reduce output voluntarily.
- Has not worked well historically.

\section*{Bargaining solution}
- Perhaps victims of pollution could negotiate with sellers of polluting products.
- They might offer to \(\qquad\) polluters to reduce ("abate") pollution.

\section*{But bargaining might not work}
- There may be many parties involved:
- many sources of pollution.
- many people affected by pollution.
- Bargaining is much more difficult if more than two parties are involved.

\section*{Page 2}

\section*{Government regulation}

If these fail, government may be able to decrease quantity to the efficient level \(Q^{*}\) through
(1) quantity limits, or
(2) pollution taxes.*
*Also called "Pigou taxes" after English economist A.C. Pigou (1877-1959), who first proposed them.

\section*{Government regulation:}
(1) quantity controls

The government could set a legal limit, or quota, at \(Q^{*}\).

\section*{Example}

Suppose a product (like coal) creates an external cost (like global warming).
- Marginal external cost at 2 million tons \(=\$\)
- Marginal external cost at 8 million tons \(=\$\)

\section*{Example: efficient output}

Efficient level of output is where marginal benefit (demand) equals marginal social cost:
\(\qquad\) million tons.

\section*{Example: deadweight loss}
- Sellers consider only their own cost.
- Without regulation, ___million tons are produced.

\section*{Example: quantity controls}
- Government could try to limit coal output to
\(\qquad\) million tons.
- This would eliminate the deadweight loss.

\section*{Government regulation: \\ (2) pollution taxes}
- Alternatively, the government could tax the product causing the pollution.
- All taxes reduce the quantity produced.
- The optimal pollution tax would reduce quantity to \(\mathrm{Q}^{*}\).

\section*{Finding the efficient pollution tax}
- To reduce quantity to Q*, set tax rate \(=\) vertical distance between demand and supply curves at \(\mathrm{Q}^{*}\).
- In other words, set tax \(=\mathrm{MEC}\) at \(\mathrm{Q}^{*}\).

\section*{Example: efficient pollution tax}
- MEC at optimal output \((4\) million tons \()=\$\)
- So efficient pollution tax is \$ \(\qquad\) per ton.
- Tax forces sellers (or buyers) to
\(\qquad\) the

external cost of pollution.
- Demand \(=\) marginal benefit \(\star\) Supply \(=\) marginal private cost \(\curvearrowright\) Marginal social cost

\section*{Conclusions}
- Some products inevitably create external costs.
- In principle, over-production could be solved by voluntary action or \(\qquad\) , but this may not work.
- Alternatively, government can impose quantity controls or tax the product that causes pollution.
- Efficient tax rate
\(\qquad\)
at the efficient quantity \(\mathrm{Q}^{*}\).

\section*{Page 1}

\section*{PROMOTING PRODUCTS \\ THAT PROVIDE EXTERNAL BENEFITS}
- How can products that provide external benefits be promoted efficiently?

\section*{Some goods provide external benefits}
- Goods like vaccines provide external benefits.
- Problem is reverse of external costs.
- Too little is purchased in a private market because buyers and sellers ignore the benefits provided to others.

\section*{Consequences of a external benefit}
- Sellers and buyers ignore external benefits (such as preventing disease).
- Actual quantity is at intersection of MC and marginal private benefit.
- Too little is produced.

Government regulation:
(1) quantity requirements

Government could
- require school children to be vaccinated.
- require homeowners to mow their lawns, shovel sidewalks.
- require office complexes to include outdoor art.

\section*{Government regulation}
- Perhaps people can be persuaded to change voluntarily.
- Perhaps affected parties could bargain with buyers or sellers, paying them to increase output.
- If these fail, government may be able to increase quantity to the efficient level Q* through
(1) quantity requirements, or
(2) subsidies, also called "Pigou subsidies."*
*After English economist A.C. Pigou (1877-1959), who first proposed them.
- Suppose a product (like flu vaccine) provides an external benefit.
- Marginal external benefit (MEB) at 2 million \(=\$\) \(\qquad\) .
- MEB at 6 million
\(\qquad\)
\(\qquad\) -.

\section*{PROMOTING PRODUCTS THAT PROVIDE EXTERNAL BENEFITS}

\section*{Page 2}

\section*{Example: efficient quantity}
- Efficient level of output is where marginal social benefit equals marginal cost (supply):
\(\qquad\)

\section*{Example: unregulated quantity}
- Demanders consider only their own benefit.
- Without regulation, __ million vaccines are purchased.

\section*{Example: quantity requirements}
- Government could require \(\qquad\) million people to get vaccines.
- This would eliminate the deadweight loss.

\section*{Finding the efficient subsidy}
- To increase quantity to \(\mathrm{Q}^{*}\), set subsidy \(=\) vertical distance between demand and supply curves at Q*.
- In other words, set subsidy \(=\) MEB at \(\mathrm{Q}^{*}\).

PROMOTING PRODUCTS THAT PROVIDE EXTERNAL BENEFITS

\section*{Page 3}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Example: efficient vaccine subsidy} \\
\hline & \\
\hline MEB at efficient & - \({ }_{\text {c }}^{59}\) \\
\hline quantity (6 million) & \\
\hline & \\
\hline S __per vaccine. & \({ }_{5}^{2}\) \\
\hline Subsidy allows buyers & \({ }_{50}^{1} \times\) N \\
\hline (or sellers) to the & \\
\hline external benefit. & \\
\hline
\end{tabular}

\section*{Conclusions}
- Some goods provide external benefits, benefits enjoyed neither by buyers nor sellers.
- In principle, under-production could be solved by voluntary action or may not work.
- To promote a good that provides an external benefit, the government can impose quantity requirements or subsidize the good.
- Efficient subsidy rate \(=\)
\(\qquad\)

\section*{Page 1}

\section*{REGULATING POLUTION DIRECTLY}
- How can pollution be cleaned up at minimum cost?

\section*{Pollution not caused by one single product}
- Sometimes external costs are not tightly connected with any one product.
- Examples: Air pollution from many factories producing a variety of products.
- Nevertheless, pollution sources will typically \(\qquad\) costs of that pollution to other people-health problems, dirt, etc.
- So \(\qquad\) pollution is emitted.

\section*{Modify the graph}
- We now assume external costs are not tightly connected with any one product sold in a market.
- So we put "pollution" itself on horizontal axis.

Units of pollution

\section*{Benefits of pollution to polluters}
- Benefits = savings from not having to pay for clean-up.
- Some sources of pollution are very expensive to clean up.
- Others are cheaper to clean up.
- Arrange from high cleanup cost to low.

\section*{Benefits and costs of pollution}
- Of course, there is no "market" for pollution, so no supply or demand curves.
- But pollution creates \(\qquad\) for polluters and \(\qquad\) for everyone else.

\section*{REGULATING POLLUTION DIRECTLY}

\section*{Page 2}

\section*{Efficient level of pollution}
- MB of pollution = cost saving from allowing one more unit of pollution.
- MC of pollution \(=\) damage to health and environment from one more unit.
- Efficient level Q*, is where \(\qquad\) \(=\) \(\qquad\)

Units of pollution

\section*{Actual level of pollution}
- Polluters typically _ costs of pollution to other people.
- They pollute whenever it saves them money.
- So
pollution is emitted.

\section*{Solutions}
- Perhaps polluters could be persuaded to reduce pollution voluntarily.
- Has not worked well historically.
- Perhaps victims of pollution could negotiate with polluters.
- Difficult if there are many polluters and many victims.

\section*{Government regulation}

If these fail, government may be able to push polluters back to the efficient level of pollution \(Q^{*}\) through
(1) Quantity limits (also called "pollution standards"), or
(2) Pollution fees.

\section*{(1) Implementing quantity limits}
- Government could set standards (permissible levels) for every pollution source (every machine, vehicle, etc.).
- Standards should be \(\qquad\) where cutting pollution is cheap, and \(\qquad\) where cutting pollution is expensive.
- Traditional "command and control" approach-very difficult.

\section*{Alternative ways to implement quantity limits}
- Government could \(\qquad\) off Q* pollution permits, or waivers, to the highest bidders.
- Or, government could issue \(\mathrm{Q}^{*}\) \(\qquad\) pollution permits, that firms could buy or sell to each other.
- Either way, same polluters end up with the permits: those for whom cutting pollution is
\(\qquad\) expensive. Why?

\section*{Page 3}

\section*{Demand for pollution permits}

Q: How much is a polluter willing to pay for a pollution permit?
A: Up to the cost of cleaning up their unit of pollution.
- So demand = clean-up costs, arranged from highest to lowest.
- Suppose pollution permits are auctioned off by the government.
- In any market, if supply is limited, goods end up in hands of demanders willing to pay the most.

\section*{Creating a market}

Who will win the bidding for permits?

Polluters for whom cleaning up pollution is _costly than
buying a permit.
- Older factories.
- Industries where alternative lesspolluting technologies are NOT available.

Who will lose the bidding for permits?

Polluters for whom cleaning up pollution is than
buying a permit.
- Newer factories.
- Industries where alternative lesspolluting technologies ARE available.

\section*{Example: optimal assignment of permits}
- Suppose government knows optimal amount of pollution is \(\mathrm{Q}^{*}=3\).
- If the government knows each factory's clean up costs, it should give pollution permits to factories
\(\qquad\) -.

REGULATING POLLUTION DIRECTLY
Page 4

\section*{Example: optimal assignment of permits (cont'd)}
- Only factories D and E must clean up.
- Total cost of clean-up \(=\$ 20+\$ 10=\$\)
- But what if the government does NOT know each factory's clean-up cost?

Example: random assignment (bad idea)
- Suppose permits were assigned randomly to, say, factories A, C, and \(E\).
- Then factories B and D would have to clean up, for a total cost of \(\$ 60+\$ 20=\) \(\qquad\)

Example: auctioning pollution permits (good idea)
- Suppose instead the government auctioned off 3 permits.
- Obviously, factories A, B, and C would bid the highest.
- Equilibrium price would be about \$

Example: cost of clean up with auction
- Factories would buy permits.
- Factories would not, because at \$25 they would find it cheaper to clean up.
- Total cost of clean-up \(=\$ 20+\$ 10=\) \(\qquad\)

\section*{Why auctions or tradable permits} cut the cost of reducing pollution
- Pollution is reduced most by polluters where cleaning up is \(\qquad\) .
- Pollution is reduced least by polluters where cleaning up is most \(\qquad\) -
- Costs are minimized through the permit market mechanism, automatically.
- Government does \(\qquad\) need to know each polluter's cost of cleaning up.

\section*{Page 5}

\section*{(2) Implementing pollution fees}
- Alternatively, the government could impose a fee for producing pollution.
- Fee can be set to reduce pollution to the desired level Q*.

Units of pollution

\section*{Example: cost of clean up}
- At a fee of \(\$ 25\) for pollution, factories _would find it cheaper to pay the fee.
- Factories would find it cheaper to clean up, for a total cost of \(\$ 20+\$ 10=\)

\section*{Example: setting a pollution fee}
- Suppose government determined that 3 units of pollution was the optimal quantity.
- By setting a fee of \$ \(\qquad\) , the government could reduce pollution to the target level.

\section*{Conclusions}
- Sometimes, pollution is not connected to any one product.
- In principle, external costs from pollution could be solved by voluntary action or \(\qquad\) —, but this may not work.
- Alternatively, government can impose quantity standards or pollution fees.
- The total cost of reducing pollution can be minimized by \(\qquad\) pollution permits, or issuing \(\qquad\) permits, or setting pollution fees.```

[^0]: ## Conclusions

 - "Principles of Microeconomics" investigates a broad range of questions about how the economy works.
 - Emphasis is on \qquad : interactions of buyers and sellers of particular products.

