BOAL'S ECON 115

SLIDESHOW HANDOUTS
 SPRING 2024

TENTATIVE COURSE SYLLABUS

1. Resources | 2. Requirements | 3. Schedule

1. Resources

Description from Course Catalog: Analysis of labor markets, including employment and unemployment, wages and benefits, education and training, worker incentives, occupational safety, labor mobility and migration, discrimination, and labor unions. Public policy issues including minimum wages, welfare programs, and unemployment compensation.

Prerequisites: ECON 002 or 010 . Experience with Excel is helpful.
CBPA Promises: "Our graduates will be equipped with the technical skills, business acumen, empathy, and experience necessary to innovate and lead in a globally complex, diverse, and dynamic world. They will be (1) Proficient in their fields, (2) Data-driven, strategic, and innovative problem solvers, (3) Effective communicators, (4) Socially and ethically responsible leaders, and (5) Global and multicultural citizens." This course addresses all five Promises, but especially Promises (1), (2), and (5).

University "Engaged Citizen" Area of Inquiry: In this course, students will learn to participate effectively in the democratic process primarily through these outcomes:
2. Establish skills, knowledge, or dispositions that lead them to be active stewards for the common good. We all have a common interest in the functioning of the labor market because most of us are workers or dependents of workers. "Labor Economics" establishes skills and knowledge to evaluate how well the labor market and related government policies serve the common good. In particular, the course develops economic theory and data analysis to evaluate the consequences of welfare programs for the poor, taxes, affirmative action, minimum wages, immigration policy, occupational health and safety regulation, investment in education and training, policy toward unions (the Wagner Act, etc.), and unemployment insurance.
3. Critically reflect on the social, economic, or political issues that they will face as citizens. As citizens, we face economic issues such as poverty, immigration, health and safety on the job, income inequality, discrimination, and unemployment. All of these topics are examined critically in ECON 115. Then we critically examine public policies intended to address these issues.
and to a lesser extent through this outcome:

1. Learn to evaluate the mix of diverse values and interests that influence democratic decision-making. Government policies are the outcome of democratic decision-making among people with diverse interests. Even bad policies usually benefit someone. As we study government policies in "Labor Economics", we use economic theory and data analysis to determine who wins and who loses from each policy, and use economic welfare analysis to evaluate how much they win or lose.

Who should take this course: This course counts as an elective for the following programs:

- Economics major; Quantitative Economics major; and Economics minor
- Human Resources concentration.
- Management and Organizational Leadership major, Human Resources track.

Lectures: Tuesday and Thursday 12:30-1:45 PM in room 112 Aliber Hall.

How to contact instructor:

- Electronic mail: william.boal@drake.edu
- Office: 319 Aliber Hall
- Telephone and voice mail: 271-3129
- U.S. mail: College of Business and Public Administration

Drake University, 2507 University Avenue, Des Moines, Iowa 50311-4505
The quickest way to reach me is by email, which I check continually throughout the day. Please do not send messages through Blackboard, which I check infrequently.

Office hours: Office hours are a time when you can get help with homework, ask questions about course material, discuss your grade or anything related to this course or economics in general. Office hours this semester will be TBA. If these hours are inconvenient due to schedule conflicts, please send email to schedule a special appointment and suggest some alternate times.

Resources to purchase:

- Required: George Borjas, Labor Economics, 9th Edition, 2024, New York: McGraw Hill Education, ISBNs: book 9781264201419 , looseleaf 9781266834936 , ebook 9781264648214 . Used copies are acceptable. The 8th edition is acceptable. The "Connect" feature is NOT needed.
- Required: Boal's Econ 115 Slideshow Handouts, a course packet. Available for purchase at TBA. Please bring it to class every day.
- Required: A simple calculator (capable of addition, subtraction, multiplication and division) for exams. Graphing calculators, calculators with alphabetical keyboards, mobile phones, and wireless devices are NOT permitted during quizzes or exams.
- Recommended: A three-ring binder and highlighter for your course packet.

Online resources:

- A Drake email account is required for all students. Course announcements will occasionally be sent to this account, so you should check it daily. Announcements often get diverted to "Junk" or "Clutter" folders, so check them as well as your inbox.
- Homework assignments are posted on Blackboard. If you have difficulty accessing Blackboard, please contact the Drake ITS HelpDesk at 271-3001.
- Old exams are posted at wmboal.com/labor.

2. Requirements

Course grade: Each exam, problem set, and data exercise is graded on a scale from zero to 100 . Your overall course score is calculated as a weighted average, using the following formula:

$$
\begin{aligned}
S C O R E= & 75 \% \times \text { Avg exam score }+15 \% \times \text { Avg problem set score } \\
& +10 \% \times \text { Avg data exercise score }- \text { Absences }
\end{aligned}
$$

A SCORE of 97 or above is required for an A+, 93 for an A, 90 for an A-, 87 for a B+, 83 for a B, 80 for a B-, 77 for a C+, 73 for a C, 70 for a C-, 67 for a $\mathrm{D}+, 63$ for a D , and 60 for a D -. SCORES will not be rounded before awarding letter grades. Extra credit work is not available.

Exams: There will be four in-class hour exams and a final examination. All exams are closed-book, closed-notes. Simple calculators are permitted. Graphing calculators, calculators with alphabetical keyboards, mobile phones, and wireless devices are NOT permitted. Exam seating is assigned. The nature of the course material is cumulative, so exams may contain material from previous sections of the course. The final exam counts double and is requiredstudents who do not take the final will not pass the course.

Problem sets: Problem sets are posted on Blackboard (drake.blackboard.com) in PDF format. Print the them, complete them in pen or pencil, and submit them at class on or before the due dates listed in the schedule below.

Data exercises: Four exercises requiring the use of Microsoft Excel will be assigned. Drake students may obtain Excel for free-see https://drake.teamdynamix.com/TDClient/2025/Portal/KB/ArticleDet?ID=28599\&SIDs=10769 for instructions. Once Excel is installed on your computer, you must install an Add-In called the "Analysis

Toolpak." For instructions, go to support.office.com and search for "Analysis Toolpak." If you are unfamiliar with Excel, please stop by my office hours for help.

Policy on late work: Early submissions are welcome but late submissions not accepted. Computer problems are not an acceptable excuse for late assignments.

Policy on absences: Attendance is taken at every class. Students may miss up to three classes for any reason without penalty (except when exams are given). Thereafter, one point will be deducted from the course SCORE for each absence. Athletic team trips, documented by a sheet from the Director of Athletics, will not be counted as absences.

Policy on rescheduling exams: If your own medical emergency, or a serious illness or death in your family requires you to miss an exam, you may be given a makeup exam. However, you must inform me of the emergency before the exam (e.g., by phone or email) and soon afterward submit a written explanation (including date of absence and documentation).

Certain other circumstances are acceptable reasons for rescheduling an exam. These include religious observance, medical appointment, interview trip, and athletic team trip. Because these circumstances can be anticipated, you must send me an email request to reschedule, with an explanation, at least one week before the date of the exam. Unacceptable reasons include family vacation, ride leaving early for break, early plane flight, overslept, etc.

Policy on grade corrections: Accurate grading is important. If you find an error, please let me know as soon as possible. The deadline for regrading homework, problem sets, or midterm exams is the day of the final exam.

Policy on computers and phones in class: Computers, tablets, and phones must be turned off during class unless I specifically announce otherwise.

Disability accommodation: Any student who has a disability that substantially limits their ability to perform in this course under normal circumstances should contact Student Disability Services, 271-1835, to request accommodation. Any request must be received from Student Disability Services at least one week before the necessary accommodation. All relevant information will be kept strictly confidential.

How to succeed in this course:

- Attend every class.
- Work assignments sets carefully. They are designed to help you prepare for exams, which count for most of the course grade. If you simply copy other students' answers, you will not be prepared for exams.
- Further prepare for exams by working old exams, posted at wmboal.com/labor. Don't look at the answer key until after you have solved each problem, or you will become overconfident.
- If you are doing all this and still having trouble, please ask for help. Talk to me after class, send email to william.boal@drake.edu, or just drop by during my office hours. I am eager to help!

Policy on academic integrity: The CBPA's Academic Integrity Policy (www.drake.edu/cbpa/about/cbpapolicies) applies to this course. The consequences of violating this policy vary, depending on my evaluation of the severity of the dishonesty. A violation (such as cheating, plagiarism, or fabrication) can result in a grade of zero on the test or assignment, an F for the course grade, or even expulsion from the University. Please read the policy and ask for clarification if necessary.

3. Schedule

If bad weather or an epidemic closes campus, most likely we will have class online using Blackboard Collaborate. Textbook should be read before class.

Part 1: Labor Supply and Demand

Big ideas: Employment and wages are determined in markets where workers are suppliers and employers are demanders.
A. Introduction [Jan 30, Feb 1]
\square Read Borjas chapter 1 including appendix, and chapter 2 through section 2-1.
\square Slideshow handouts: Labor markets. Elasticities of labor supply and demand. Economic models and policy decisions. Regression analysis. Measuring the labor force.
\square Do Slideshow Quiz on Blackboard by Feb 2.
\square Problem set due Feb 6.
B. Labor supply theory [Feb 6, 8]
\square Read Borjas remainder of chapter 2, sections 2-2 through 2-8.
\square Slideshow handouts: Trends in labor supply. Preferences. The budget constraint. Optimal choice. Changes in nonlabor income. Changes in the wage. Labor supply curves.
\square Do Slideshow Quiz on Blackboard by Feb 9.
\square Problem set due Feb 13.
C. Labor supply applications [Feb 13, 15]
\square Read Borjas remainder of chapter 2, section 2-9 to the end.
\square Slideshow handouts: Elasticities of individual labor supply. Household specialization. Fertility. Welfare programs. The Earned Income Tax Credit. Life cycle labor supply. Decline in labor force participation of older men.
\square Do Slideshow Quiz on Blackboard by Feb 16.
\square Problem set due Feb 20.
D. Labor demand [Feb 20, Feb 22, Feb 27]
$\square \quad$ Read Borjas chapter 3.
\square Slideshow handouts: Production. Demand for labor in the short run. Producing output at minimum cost in the long run. Affirmative Action and production costs. Demand for labor in the long run. Elasticity of labor demand. Input demand with more than two inputs. Effects of minimum wages. Demand for workers versus demand for hours. Adjustment of employment.
$\square \quad$ Do Slideshow Quiz on Blackboard by Feb 28.
\square No problem set. Instead, study for exam.
\square Data exercise 1 due Mar 5 (see Blackboard).
First exam [Feb 29]

- Prepare by reviewing slideshow handouts and studying old exams posted online (wmboal.com/labor).
- Bring a straightedge to this exam - a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 2: Equilibrium and Differences in Pay

Big ideas: The competitive model can be used to analyze a variety of scenarios. However, some markets show evidence of employer market power. Systematic differences in pay are largely driven by differences in conditions across jobs and differences in productivity across workers.
A. Competitive labor market equilibrium [Mar 5,7]
$\square \quad$ Read Borjas chapter 4 through section 4-8.
\square Slideshow handouts: Equilibrium in a single labor market. Competitive equilibrium across labor markets. Payroll taxes and subsidies. Mandated benefits. Immigration and market equilibrium. Economic benefits from immigration.
\square Do Slideshow Quiz on Blackboard by Mar 8.
\square Problem set due Mar 19.
\square Enjoy Spring Break! [Mar 11-15]
B. Employer market power [Mar 19]
\square Read Borjas chapter 4 section 4-9.
\square Slideshow handouts: Monopsony in the labor market. Welfare analysis of monopsony. Effect of minimum wage on monopsony. Detecting monopsony. Employer collusion.
\square Do Slideshow Quiz on Blackboard by Mar 20.
\square Problem set due Mar 21.
C. Compensating wage differentials [Mar 21, 26]
$\square \quad$ Read Borjas chapter 5.
\square Slideshow handouts: Compensating wage differentials. Hedonic equilibrium. Value of a statistical life. Occupational safety and health regulation. Compensating differentials for risk of layoff. Compensating differentials for benefits.
\square Do Slideshow Quiz on Blackboard by Mar 27.
\square Problem set due Mar 24.
D. Human capital [Mar 28, Apr 2]
\square Read Borjas chapter 6, and chapter 7 through section 7-4.
\square Slideshow handouts: Education in the labor market. A simple model of the schooling decision. A general model of the schooling decision. Measuring the return to schooling. School quality and earnings. Job market signaling. On-the-job training.
\square Do Slideshow Quiz on Blackboard by Apr 3.
\square No problem set. Instead, study for exam.
\square Data exercise 2 due Apr 9 (see Blackboard).
Second exam [Apr 4]

- Prepare by reviewing slideshow handouts and studying old exams posted online (wmboal.com/labor).
- Bring a straightedge to this exam - a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 3: Wage Distribution, Mobility, and Discrimination

Big ideas: Earnings and wages have become more unequal in recent decades, but proposed explanations are controversial. Workers move because the benefits of moving outweigh the costs. Discrimination is real and in some ways puzzling, but economics offers several alternative explanations.
A. The wage distribution [Apr 9, 11]
\square Read Borjas chapter 7 section 7-5 to the end.
\square Slideshow handouts: The distribution of income, earnings and wages. Measuring inequality. Trends and explanations of U.S. wage inequality. Superstars. Intergenerational mobility.
\square Do Slideshow Quiz on Blackboard by Apr 12.
\square Problem set due Apr 16.
B. Labor mobility [Apr 16]
$\square \quad$ Read Borjas chapter 8 .
\square Slideshow handouts: The migration decision. Internal migration within the United States. History of immigration into the United States. Who immigrates into the United States? Immigrants in the U.S. labor market. Job turnover.
\square Do Slideshow Quiz on Blackboard by Apr 17.
\square Problem set due Apr 18 .
C. Discrimination [Apr 18]
$\square \quad$ Read Borjas chapter 9.
\square Slideshow handouts: Evidence of discrimination. Preference-based theories of discrimination. Other economic theories of discrimination. Black-White wage ratio. Female-male wage ratio.
\square Do Slideshow Quiz on Blackboard by Apr 19.
\square No problem set. Instead, study for exam.
\square Data exercise 3 due Apr 25 (see Blackboard).
Third exam [Apr 23]

- Prepare by reviewing slideshow handouts and studying old exams posted online (wmboal.com/labor).
- Bring a straightedge to this exam-a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

Part 4: Unions, Incentive Pay, and Unemployment

Big ideas: Unions were once crucial in setting pay but are less prevalent than they used to be. Incentive pay schemes are still prevalent, but sometimes have unintended consequences. Unemployment is inevitable in a dynamic economy, but perhaps can be ameliorated.
A. Labor unions [Apr 25, Apr 30]
\square Read Borjas chapter 10.
\square Slideshow handouts: Labor unions in the United States. The monopoly union model. The efficient bargaining model. Strikes. Measuring the effects of unions. Occupational licensing.
$\square \quad$ Do Slideshow Quiz on Blackboard by May 1.
$\square \quad$ Problem set due May 2.
\square Data exercise 4 due May 7 (see Blackboard).
B. Incentive pay [May 2]
$\square \quad$ Read Borjas chapter 11.
\square Slideshow handouts: Piece rates and time rates. Tournaments. Delayed compensation. Efficiency wages.
\square Do Slideshow Quiz on Blackboard by May 3.
$\square \quad$ Problem set due May 7.
C. Unemployment [May 7, May 9]
$\square \quad$ Read Borjas chapter 12.
\square Slideshow handouts: Unemployment in the United States. Types of unemployment. Unemployment dynamics. Searching for a job. Theories of cyclical unemployment. Unemployment insurance in the United States. The Phillips curve.
\square Do Slideshow Quiz on Blackboard by May 10.
\square No problem set. Instead, study for final exam.

Final Exam

The University Registrar (www.drake.edu/registrar) has scheduled the final exam for this course on TBA in the regular classroom. The content of the final exam is comprehensive and includes questions from all parts of the course.

- Prepare by reviewing the hour exams you have taken already and old final exams posted online.
- Bring a straightedge to this exam - a ruler or an extra pencil.
- You may use a simple calculator, but graphing calculators, calculators with alphabetical keyboards, wireless devices and mobile phones are NOT permitted.
- Exam seating is assigned, so please check the projector screen before you sit down.

PART 1

Labor Supply and Demand

Big ideas: Employment and wages are determined in markets where workers are suppliers and employers are demanders.

LABOR MARKETS

- What is labor economics about?

Labor markets

- Labor economics analyzes work and pay as outcomes of markets.
- The market quantity is \qquad : the number of people working (or perhaps the total hours they work).
- The market price is the \qquad : the amount they are paid per hour (or perhaps per week or per year.)

Players in the labor market

- Suppliers are \qquad looking for jobs.
- Demanders are \qquad (or other employers) who want to hire workers.
- Government sometimes changes the rules of the market.

Labor supply

- Workers, trying to maximize their own well-being, decide whether to work, and how many hours.
- The higher the wage, the more workers choose to work at least some hours.
- Thus, labor supply slopes \qquad _.

Employment

Labor demand

- Firms, trying to maximize their profit, decide how many workers to hire, and for how many hours.
- The higher the wage, the fewer workers they find it profitable to hire.
- Thus, labor demand slopes \qquad

Employment

How demand and supply interact

- If wage is very high, more people want to work than firms are willing to hire.
- Excess \qquad —.
- Firms find they can lower wage and still fill all their vacancies.
- Market wage
\qquad -.

How demand and supply interact (cont'd)

- If wage is very low, fewer people want to work than firms want to hire.
- Excess \qquad .
- Firms find they can fill their vacancies only by raising wage.
- Market wage

Employment

Applying the supply-and-demand

- Construction of pipeline should have temporarily increased demand for engineers in Alaska.
- What happens when demand curve shifts \qquad ?

Equilibrium

- Equilibrium occurs when there is no downward or upward pressure on the wage.
- Number of workers who choose to work equals number of workers that firms want to hire.

Application: the Alaska oil pipeline

- 1968: oil discovered in Prudhoe Bay, northern Alaska.
- Oil companies proposed to build 789-mile pipeline to bring oil across Alaska to Valdez, an ice-free port.
- 1973: Congress approved pipeline.
- 1974-1977: Pipeline constructed.

Model successfully predicted what actually happened

- Wages \qquad at the beginning of construction, then \qquad when pipeline was finished.
- Employment was already rising before the pipeline, as Alaska's population was growing.
- Employment \qquad sharply at the beginning of construction, then \qquad back to its prior trend when pipeline was finished.

Conclusions

- Labor economics analyzes work and pay as outcomes of labor markets.
- The simplest market model assumes ____-sloping demand by employers and \qquad -sloping supply by workers.
- It can explain broad movements in employment and wages.

ELASTICITIES OF LABOR DEMAND AND SUPPLY

- How can we measure the sensitivity of labor demand or supply to the wage?

How flat or steep is labor demand?

- The higher the wage, the fewer workers firms want to hire.
- How many fewer?
- We need a way to measure the sensitivity of labor demand to the wage.

Employment

Wage elasticity of labor demand: definition

$$
\varepsilon_{E}^{D}=\frac{\% \operatorname{chg} E}{\% \operatorname{chg} W}=\frac{(\Delta E) / E}{(\Delta W) / W}=\frac{\Delta E}{\Delta W} \cdot \frac{W}{E}
$$

where changes (Δ) are measured along labor demand curve.

- Since demand slopes down, $\varepsilon_{\mathrm{E}}{ }^{\mathrm{D}}$ must be
\qquad (but some authors drop the
minus sign).

Wage elasticity of labor demand: examples

- Suppose a 10% increase in wage causes the industry to hire 4\% less labor input.
Then $\varepsilon_{E}^{D}=\frac{\% \text { change } E}{\% \text { change } w}=\frac{-4 \%}{10 \%}=$ \qquad -
- Alternatively suppose a 10% increase in wage causes the industry to hire 15% less labor input.
Then $\quad \varepsilon_{E}^{D}=\frac{\% \text { change } E}{\% \text { change } w}=\frac{-15 \%}{10 \%}=$ \qquad -

$$
\text { Extreme cases: } \varepsilon_{E}^{D}=\frac{\% \operatorname{chg} E}{\% \operatorname{chg} W}
$$

Using wage elasticity of labor demand: example

- Assume no shift in labor demand curve.
- If wage rises by 5% and $\varepsilon_{\mathrm{E}}{ }^{\mathrm{D}}=-0.8$, what happens to employment?
- Set $\varepsilon_{E}^{D}=-0.8=\frac{\% \operatorname{chg} E}{\% \operatorname{chg} W}=\frac{\% \operatorname{chg} E}{5 \%}$.
- Solve to get \% chg $\mathrm{E}=-0.8 \times 5 \%=$ \qquad \%.
- Conclude that employment \qquad by \qquad percent.

Using wage elasticity of labor demand: another example

- Again assume no shift in labor demand curve.
- If employment decreases by 3% and $\varepsilon_{\mathrm{E}}{ }^{\mathrm{D}}=-0.6$, what happens to wage?
- Set $\varepsilon_{E}^{D}=-0.6=\frac{\% \operatorname{chg} E}{\% \operatorname{chg} W}=\frac{-3 \%}{\% \operatorname{chg} W}$.
- Solve to get \% chg $\mathrm{W}=-3 \% /-0.6=$ \qquad \%.
- Conclude that wage \qquad by
\qquad percent. per \qquad

Wage bill: definition

- Wage bill $=W \times E$
- Total amount of money firms spend on all employees.
- Equals labor income of all employees.
- Equals area of box.

Inelastic labor demand

- If \% decrease in employment is less than \% increase in wage, then area of box increases.
- So wage bill \qquad .
- This happens if $\left|\varepsilon_{E}^{D}\right|=\left|\frac{\% c h g E}{\% \text { chg } W}\right| \quad 1$.

Changes in wage bill

- Assume no shift in labor demand curve.
- As wage increases, employment decreases.
- What happens to wage bill?
- Key formula: \% change in wage bill \approx \% chg W + \% change E

Elastic labor demand

- If \% decrease in employment is greater than \% increase in wage, then area of box decreases.
- So wage bill \qquad _.
- This happens if

$$
\left|\varepsilon_{E}^{D}\right|=\left|\frac{\% \operatorname{chg} E}{\% \operatorname{chg} W}\right|
$$

1.

Computing changes in wage bill: example

- Assume no shift in labor demand curve.
- If wage rises by 5% and $\varepsilon_{\mathrm{E}}^{\mathrm{D}}=-0.8$, what happens to wage bill?
- We already found E decreases by 4%.
- So \% change in wage bill $=+5 \%+-4 \%=$
\qquad \%.
- Conclude that wage bill \qquad by
\qquad percent.

How flat or steep is labor supply?

- The higher the wage, the more workers will want to work in this labor market.
- How many more?
- We need a way to measure the sensitivity of labor supply to the wage.

Extreme cases: $\varepsilon_{E}^{S}=\frac{\% \operatorname{chg} E}{\% \operatorname{chg} W}$

Conclusions

- Elasticities measure the sensitivity of labor demand or supply to the wage.
- Elasticities = — , measured either along the labor demand or supply curves.
- If labor demand is inelastic, the wage bill
\qquad when the wage rises.

ECONOMIC MODELS AND POLICY DECISIONS

- How can models help us analyze public policy?
- What can models NOT do?

What good are economic models?

- Models help us understand how labor markets work-what causes what.
- Good models have \qquad predictions. We can check them.
- But to be manageable and understandable, models must omit some \qquad of the real world.

Models help evaluate government policies

- For example, models can predict the consequences of government policies that change demand or supply, or change the market mechanism.
- Models can predict what will happen to
\qquad , \qquad , and
sometimes other things like output prices, wage inequality, etc.

Examples of government policies that can be analyzed with economic models

- Changes in the minimum wage.
- Changes in tax rates on workers or firms.
- Changes in unemployment benefits.
- Changes in government support for higher education.
- Changes in immigration policy.
- Changes in discrimination law.

Limits of models

- Models can predict who wins, who loses, and how much from changes in government policies.
- But cannot tell us directly \qquad a policy should be changed.
- That requires a \qquad judgment, which models cannot provide.

Example 1

- Suppose a proposed change in immigration policy would allow 10 million new immigrants.
- Suppose our model predicted that this change would
- reduce income of native workers by $\$ 50$ billion
- but increase profits of their employers by $\$ 80$ billion.

Example 1 (cont'd)

- Should this change be made? Our model cannot answer that question.
- To decide, we must make a \qquad judgment. Must somehow decide whether rise in profits is worth fall in workers' incomes.
- Model is helpful, but \qquad sufficient for making decisions.

Example 2 (cont'd)

- Should the minimum wage be increased? Again, our model cannot answer that question.
- To decide, we must make a \qquad judgment. Must somehow decide whether rise in workers' earnings is worth fall in other workers' earnings and fall in profits.
- Model is helpful, but \qquad sufficient for making decisions.

Pareto improvements:
 "win-win" changes

- Occasionally, a policy or other change in the economy creates one or more winners and
\qquad losers.
- A change that creates at least one winner and
\qquad losers is called a Pareto
improvement.*
- Most people would agree that Pareto improvements should be done.

Pareto improvements: "win-win" changes
- Occasionally, a policy or other change in the
economy creates one or more winners and
losers.
- A change that creates at least one winner and
losers is called a Pareto
improvement.*
Most people would agree that Pareto
improvements should be done.
*vilifedo Pareto, 1848-1923, traian economist working in france.

Example 2

- Suppose a proposal would increase the minimum wage by $\$ 2$.
- Suppose our model predicted this would
- increase the earnings of some workers by $\$ 20$ billion,
- decrease the earnings of other workers (through lost jobs) by \$10 billion,
- and decrease profits of employers by $\$ 15$ billion.

Positive versus normative economics

- \qquad economics = understanding
how markets work.
- Requires models.
-

\qquad economics = deciding what
should be done.

- Requires models AND value judgments.

"Win-lose" changes

- Unfortunately, most changes in the economy create \qquad winners and losers.
- Example: The invention of radial tires, which last several times as long as older designs, reduced employment in U.S. tire industry by about 40\%.
- So a more practical approach is needed.

A practical approach to normative economics

- How to decide
- Simply \qquad gains and losses to everyone, and check if pie has increased in size.
- Motivation
- If winners' gains are larger than losers' losses, winners could in principle \qquad losers and everyone could come out ahead.

Does the "compensation test" make sense?

- Yes
- Policy changes that pass the "compensation test"
\qquad the pie.
- They are called "economically \qquad .$"$
- No
- In reality, when policies are changed, compensation is almost \qquad really paid.
- Someone \qquad from almost every policy change. \qquad from almost every policy

Conclusions

- Economic models can predict what will happen after a policy change (\qquad economics).
- However, they cannot decide whether the change should be made (\qquad economics).
- The " \qquad test" is a simple approach to normative economics that adds up gains and losses to everyone.

Applying the "compensation test"

- Example 1
- Net gain to society $=-\$ 50+\$ 80=\$$ \qquad billion.
- \qquad pass test.
- Example 2
- Net gain to society
$=+\$ 20-\$ 10-\$ 15=\$$ \qquad billion.
- \qquad pass test.

Positive economics still useful without compensation test

- Even if we do not strictly apply the compensation test, we still want to know who wins, who loses, and how much.
- Example 1: we might reconsider minimum wage if net loss were \qquad -
- Example 2: we might question immigration change if net gain were \qquad _.
- So economic models are still useful.

REGRESSION ANALYSIS

- How can we test and measure economic relationships in the real world?

Analyzing data

- To test and measure economic relationships, labor economists use \qquad from the real world.
- We usually want to find out \qquad one variable affects another, and if so, how
\qquad the relationship is.

Examples of economic relationships

- Does more education increase a worker's earnings? If so, how much?
- Does an increase in the minimum wage reduce employment? If so, how much?
- Do unions raise wages? If so, how much?
- Do increased unemployment benefits cause people to remain unemployed longer? If so, how much?

Linear relationships

- Suppose x and y have a linear relationship: $y=\beta_{1}+\beta_{2} x$.
- $\beta_{1}=$ \qquad
- $\beta_{2}=$ \qquad

Meaning of slope

- If x increases by a small amount, then y changes by β_{2} times that amount.
- Example: Suppose $\beta_{2}=2$ and x increases by 0.4. Then y increases by (approximately)
\qquad —.

Measuring relationships

- Suppose we have data on x_{i} and y_{i}, for $i=1$ through n .
- We believe that x and y have a roughly \ldots relationship: $\overline{y=\beta_{1}+\beta_{2}} x$.
- How can we estimate β_{1} and β_{2} ?

Example 1: household income and food expenditure					
Housenold	Weeky	Food	Housenold	We	d
1	258.3	52.25	11	564.6	107.48
2	343.1	58.32	12	588.3	98.48
3	425	81.79	13	59.3	181.21
4	467.5	119.9	14	607.3	
5	482.9	125.8	15	611.2	
6	487.7	100.46	16	631	92.84
7	496.5	121.51	17	659.6	117.92
8	519.4	100.08	18	664	
9	543.3	127.75	19	704.2	182.28
10	548.7	104.94	20	704.8	139.13

Fitting a line to data

- Economic data rarely lie exactly on a straight line.
- So we must find a line that fits the data "best."
- How to choose the "best"-fitting line?

The least-squares principle

- Choose the line that minimizes the sum of the squared vertical deviations.
- In other words, find values of β_{1} and β_{2} that minimize the following:

2

$$
\sum_{i=1}^{n}\left(y_{i}-\left[\beta_{1}+\beta_{2} x_{i}\right]\right)
$$

- MS Excel has a "regression tool" for this.

LS estimates for the household food expenditure dataset

- Y-intercept $\left(\beta_{1}\right): 12.94$
- Slope $\left(\beta_{2}\right)$: 0.18
- Fitted line: y = \qquad $+$ \qquad x
- Interpretation: if income increases by one dollar, spending on food increases by \$ \qquad _.

Natural logs

- Definition of natural logarithm:
$\ln (z)=$ logarithm of z to base e=2.711828...
- In other words $z=e^{\ln (z)}$.
- Thus if $\ln (z)$ increases by 1 unit, then z itself is by a factor of $\mathrm{e}=$ 2.711828...

From calculus we know that $\frac{d \ln (z)}{d z}=\frac{1}{z}$ or $d \ln (z)=\frac{d z}{z}$.

- This implies that if $\ln (z)$ increases by a small amount, then z itself changes by approximately that

Change in $\ln (z)$	Approx. change in z
0.01	$\%$
0.03	$\%$
0.05	$\%$
0.10	$\%$

Small changes in natural logs

\qquad -

Meaning of slope when y is in natural logarithms

- Suppose $\ln y=\beta_{1}+\beta_{2} x$.
- If x increases by a small amount, then $\ln (y)$ changes by β_{2} times that amount.
- But y itself changes by a \qquad about equal to β_{2} times that amount.
- Example: Suppose $\beta_{2}=0.03$ and x increases by 2. Then y increases by (approximately)
\qquad \%.

Example 2: average hourly wage and average schooling by occupation		
Occupation	hourly wage	mooling
Administrators and officials pubicic admin.	3.24	15.7
Othere eecelives, administrators, ald	3.29	14.9
Managementreelated occupations	3.16	15.4
Engineers	3.37	15.8
Matematical and computer scienisiss	${ }_{3.36}$	
Ett.	Eto.	
Forestry and fishing oculapioios	2.70	
Borjas $5^{\text {th }}$ edition, page 15, table 1-1. 45 ob OURCE: Annual demographic files of the	Vations.	

LS estimates for the wage and schooling dataset

- Using Excel, I computed LS estimates of $\ln w=\beta_{1}+\beta_{2} s$.
- Intercept $\left(\beta_{1}\right): 0.869$
- Slope $\left(\beta_{2}\right)$: 0.143
- Fitted line: In w = \qquad $+$ \qquad s
- Interpretation: if schooling increases by one year, wage increases by about
\qquad \%.

Standard errors and confidence intervals

- LS estimates are not precise because datasets are, at best, \qquad samples from a much larger population.
- The "standard error" of a LS estimate is a measure of its precision.
- Roughly speaking, an estimate is within
\qquad standard errors of its true value 95% of the time.

Standard errors for the wages and schooling dataset

- Excel also reported the standard errors shown below in parentheses:

$$
\begin{aligned}
\ln w= & 0.869+0.143 \mathrm{~s} \\
& (0.172) \quad(0.012)
\end{aligned}
$$

- So a 95% confidence interval (or "margin of error") for the slope would be $0.143 \pm 2 \times 0.012=0.143 \pm$ \qquad .

Multiple regression

- In the real world, any variable y is affected by multiple variables.
- If an important variable (other than x) is changing in our dataset, then our simple LS estimate of the slope may be \qquad .
- To get an unbiased estimate, we must include that other variable in a \qquad regression equation:

$$
y=\beta_{1}+\beta_{2} x+\beta_{3} z
$$

LS estimates for the multipleregression equation

- $\ln w=0.924+0.150 \mathrm{~s}-0.003 \mathrm{f}$ (0.154) (0.011) (0.001)
- Interpretation: holding female share (f) constant, if schooling increases by one year, wage increases by about \qquad \%.
- Holding schooling constant, if female share increases by one percentage point, wage
\qquad by about \qquad $\%$.

Statistical significance

- We say that an estimate is "statistically significant at the 5% level" if
- the 95% confidence interval does not include zero,
- or equivalently, $\mathrm{t}=\frac{\text { estimate }}{\text { standard error }}>2$.
- For the slope estimate, $\mathrm{t}=0.143 / 0.012=$
\qquad _.
- Clearly the slope estimate \qquad statistically significant.

Example 2: percent female employment by occupation			
Occupation	Mean log hourly wage of male workers	Mean years of schooling for male workers	Female share (\%)
Administrators and officials, public admin.	3.24	15.7	52.4
Other executives, administrators, and managers	3.29	14.9	42.0
Management-related occupations	3.16	15.4	59.4
Engineers	3.37	15.8	10.7
Mathematical and computer scientists	3.36	15.6	32.2
Etc.	Etc.	Etc.	Etc.
Forestry and fishing occupations	2.70	12.0	3.7

Conclusions

- LS regression allows us to test and measure real-world relationships between variables.
- If the y variable is in natural logs, then the estimate of β_{2} shows the \qquad increase in y from a one-unit increase in x.
- If an important variable (other than x) is changing in our dataset, we should use
\qquad regression.

MEASURING THE LABOR FORCE

Who collects the data?

- Census Bureau surveys about 60,000 households each month in its "Current Population Survey."
- Results related to labor force are released by the Bureau of Labor Statistics (BLS).
- How is the labor force counted?
- How does the labor force in the U.S. today compare with other countries and with the past?
- Working-age population defined as persons 16 years old and older, not in institutions (prison, mental institutions, active duty in military, etc.).

How people are classified

- All working-age persons are categorized as either:
- Employed (at a paid job).
- Unemployed (looking for work).
- Not in labor force.

Who is counted as "employed"?

- Worked full time \qquad Last week,
- Worked part time \qquad
- Self-employed \qquad , did you do
- Worked in a family business \qquad any work
- Did unpaid work at home \qquad
- Did volunteer work \qquad for pay?

Who is counted as "unemployed"?

- Contacted employer \qquad Have you been
- Cont. empl. agency \qquad
- Cont. friends, relatives \qquad
- Sent out resumes \qquad anything to find work during the
- Placed or answered ads \qquad last 4 weeks?
- Looked at ads \qquad \longrightarrow
- Attended job training course \qquad

Who is counted as

 "in the labor force"?- Employed \qquad
- Unemployed \qquad
- Been hired for job but not yet started work
- Want a job but have given up looking for one ("discouraged worker") \qquad

Example: 2019

- Working-age population $=259.2$ million
- Employed = 157.5 million
- Unemployed $=6.0$ million
- Labor force = \qquad million
- Unemployment rate = \qquad \%
- Labor force participation rate = \qquad \%
- Employment/population ratio = \qquad \%

Source: FRED (fred.stlouisfed.org).
Trends in U.S. labor participation rate and employment/population ratio FRED = =umporpumat

Source: FRED (fred.stlouisfed.org).

The "natural rate" of unemployment

- Natural rate of unemployment = unemployment rate in the absence of booms or recessions.
- That is, when GDP = \qquad GDP.
- Also called "non-accelerating-inflation rate of unemployment" or \qquad _.

"Hidden unemployed"

- During recessions and slumps, some people the labor force.
- Persons out of the labor force who
(1) want a job,
(2) are available for work, and
(3) looked for a job in the last year are called "marginally attached to the labor force" by the BLS.
- In November 2023, million people were counted as "marginally attached to the labor force."

The "natural rate" varies...

...over time.

- Was probably around 5% in the 1950 s.
- Probably increased to 6% or 7% in the late 1960s and early 1970s.
- Seems to be around \qquad now.
...across countries.

"Hidden unemployed" (cont’d)

- A subset of these persons, who say they did not look for work in the last 4 weeks because they thought no jobs are available, are called "discouraged workers."
- In November 2023, \qquad million people were counted as "discouraged workers."

"Hidden unemployed" (cont’d)

- Finally, some persons who are working parttime want to work full-time.
- The number of these persons increases in recessions.
- In November 2023, \qquad million people were counted as "working part-time for economic reasons."

Conclusions

- Each month,
estimates the number of people employed, unemployed, and out of the labor force.
- Unemployment rate =
- The "natural rate" of unemployment seems to be about \qquad in the U.S. now.

TRENDS IN LABOR SUPPLY

- What are the basic facts of labor supply in the U.S.?

Labor supply and gender

	Women	Men
Labor force participation rate	71.4%	83.1%
Annual hours of work	1933 hours	2170 hours
Percent of workers in part-time jobs	12.9%	4.3%

Labor supply and education

- Labor force participation is \qquad for persons with more education.
- Among those working, hours of work are
\qquad for persons with more education.
- College-educated workers are \qquad likely to hold part-time jobs than workers without a high-school diploma.

SOURCE: CPS March 2017, as reported by Borjas, $8^{\text {th }}$ edition, p. 24, table 2-3. for for white men

Labor supply and race

- Labor force participation is \qquad white men than for African-American men.
- Hours of work are \qquad than for African-American men.
- \qquad difference for women.

Conclusions

- Over the last 50-100 years...
- Labor supply of older men has \qquad -.
- Labor supply of married women has sharply.
- Weekly hours of work have \qquad .
- Today, labor supply is \qquad on average...
- for men than for women.
- for more educated persons.

PREFERENCES

- People value both consumption goods and leisure time.
- How can we represent their preferences graphically?

Utility function

- One way to represent a worker's preferences is through a utility function: $U=f(C, L)$.
- The utility function assigns points (or "utils") to every combination (or "bundle") of C and L.
- The more utils, the \qquad attractive a combination is to this worker.

Utility function: example

- Suppose a worker had the utility function $\mathrm{U}=\mathrm{C}(\mathrm{L}-10)$.
- Then bundle A, consisting of $\mathrm{C}=\$ 100$ and $\mathrm{L}=40$ hours, gives $\mathrm{U}=$ \qquad utils.
- Bundle B, consisting of $C=\$ 200$ and $L=30$ hours, gives U = \qquad utils.
- This worker prefers bundle \qquad over bundle
\qquad because it brings more utils.

Preferences

- The "neoclassical" model of labor supply assumes that workers \qquad
\qquad
- Workers value both leisure time (L) and consumption goods they must purchase (C).
- L is usually measured in hours, but sometimes in days or weeks.
- C is measured as the total \qquad value of consumption goods purchased.

,

Indifference curves

- A graphical way to represent preferences is to draw curves connecting equallypreferred bundles.
- Bundles on the curve provide the same number of \qquad

Indifference curves must slope down

- People value both L and C .
- If a worker gets more L , the only way they can remain equally well-off is if they lose some C.

Indifference curves must slope down: example

- This curve suggests that ($\$ 200,30$ hours) is equally preferred to (\$300, 40 hours).
- Violates assumption that people value both L and C .
- \qquad a valid indifference curve!

Families of indifference curves:

example

- For this worker,
- $(\$ 100,20$ hours is equally preferred to (\$50, 30 hours).
- ($\$ 100,50$ hours) is more preferred to both of the above.
- ($\$ 200,60$ hours) is preferred to all three.

Indifference curves cannot cross

- These curves suggest that A is equally preferred to B, and B is equally preferred to C.
- But A cannot be equally preferred to C !
- Violates assumption that people value both L and C .

Families of indifference curves

- Everyone has a whole family of indiff. curves.
- More of either C or L is preferred.
- Indifference curves that are and to the represent preferred combinations.

Indifference curves cannot cross

- These curves suggest that A is equally preferred to B, and B is equally preferred to C.
- But A cannot be equally preferred to C !
- Violates assumption that people value both L and C .

Marginal utility

- $\mathrm{MU}_{\mathrm{L}}=$ marginal utility of leisure $=$ increase in utility from one more hour of leisure (holding consumption constant).
- $\mathrm{MU}_{\mathrm{C}}=$ marginal utility of consumption = increase in utility from one more dollar of consumption (holding leisure constant).
- Since we assume people value both L and C, $M U_{\mathrm{L}}$ and MU_{C} must be \qquad _.

Finding formulas for marginal utility

- Given a utility function, marginal utilities can be found using calculus.
- $\mathrm{MU}_{\mathrm{L}}=\frac{\partial U(C, L)}{\partial L}=$ derivative of U w.r.t. L.
- We use the " ∂ " symbol rather than " d " to indicate a partial derivative-that is, C is treated as a \qquad in finding MU_{L}.
- Similarly, $\mathrm{MU}_{\mathrm{C}}=\frac{\partial U(C, L)}{\partial C}$.

Finding formulas for marginal utility: example 1

- Suppose worker \#1 has utility function $U(C, L)=C^{2} L$.
- Then worker \#1's marginal utility of leisure = $\mathrm{MU}_{\mathrm{L}}=\frac{\partial U(C, L)}{\partial L}=$ \qquad —.
- Worker \#1's marginal utility of consumption = $\mathrm{MU}_{\mathrm{C}}=\frac{\partial U(C, L)}{\partial C}=$ \qquad -.

Finding formulas for marginal utility:

example 2

- Suppose worker \#2 has utility function $U(C, L)=(C-200) L$.
- Then worker \#2's marginal utility of leisure = $\mathrm{MU}_{\mathrm{L}}=\frac{\partial U(C, L)}{\partial L}=$ \qquad .
- Worker \#2's marginal utility of consumption = $\mathrm{MU}_{\mathrm{C}}=\frac{\partial U(C, L)}{\partial C}=$ \qquad .

Finding formulas for marginal utility: example 3

- Suppose worker \#3 has utility function $\mathrm{U}(\mathrm{C}, \mathrm{L})=\mathrm{C}(\mathrm{L}-6)$.
- Then worker \#3's marginal utility of leisure $=$ $\mathrm{MU}_{\mathrm{L}}=\frac{\partial U(C, L)}{\partial L}=$ \qquad .
- Worker \#3's marginal utility of consumption = $\mathrm{MU}_{\mathrm{C}}=\frac{\partial U(C, L)}{\partial C}=$ \qquad .

Slope of indifference curve:
example

- This worker is just willing to give up \$ \qquad of C for one more hour of L .
- Also just willing to give up one hour of L for \$ \qquad more of C .

Marginal rate of substitution:

definition

- MRS of leisure time for consumption goods $=\mid$ slope \mid of indifference curve. = dollar value of C willing to give up for one more hour of L.

MRS and marginal utilities: example 3

- We showed earlier that if worker \#3 has utility function $U(C, L)=C(L-6)$, then

$$
\begin{aligned}
& \mathrm{MU}_{\mathrm{L}}=\frac{\partial U(C, L)}{\partial L}=\mathrm{C}, \text { and } \\
& \mathrm{MU}_{\mathrm{C}}=\frac{\partial U(C, L)}{\partial C}=(\mathrm{L}-6) .
\end{aligned}
$$

- Worker \#3's MRS must therefore be $\mathrm{MRS}=\frac{M U_{L}}{M U_{C}}=$

MRS and marginal utilities

- If leisure time increases by $\Delta \mathrm{L}$ hours, then utility increases by ($\Delta \mathrm{L} \times \mathrm{MU}_{\mathrm{L}}$) utils.
- If consumption increases by ΔC dollars, then utility increases by ($\Delta \mathrm{C} \times \mathrm{MU}_{\mathrm{C}}$) utils.
- Along an indifference curve, utility does \qquad change, so $\left(\Delta \mathrm{L} \times \mathrm{MU}_{\mathrm{L}}\right)+\left(\Delta \mathrm{C} \times \mathrm{MU}_{\mathrm{C}}\right)=$ \qquad —. A little algebra shows

$$
\mathrm{MRS}=-\frac{\Delta C}{\Delta L}=
$$

Indifference curves are curved

- "Diminishing MRS."
- Why we know this: people would prefer a little of both C and L, rather than only C or only L.

Conclusions

- The "neoclassical" model assumes workers value both consumption and leisure.
- Preferences can be represented by a \qquad function $U=f(C, L)$ and graphically by
\qquad curves.
- The |slope| of an indifference curve is called the \qquad . Its formula is $=M U_{L} / \mathrm{MU}_{\mathrm{C}}$.

THE BUDGET CONSTRAINT

- Workers face a tradeoff between consumption goods and leisure time.
- What does that mean?

Labor income

- Part of a worker's income depends on the number of hours worked.
- Let $h=$ hours worked during this period.
- Let $\mathrm{w}=$ hourly wage rate, assumed constant.
- Then labor income = \qquad -.

Nonlabor income

- The other part of a worker's income does not depend on the number of hours worked.
- Examples: \qquad -
- Let $\mathrm{V}=$ nonlaborincome.

Budget constraint: consumption = income

- The maximum amount of consumptiona worker can enjoy equals the worker's income:

$$
C=w h+V
$$

- We assume w and V are \qquad .
- Worker chooses only C and h.

Work versus leisure

- Worker can use their time for either work or leisure.
- Let $T=$ total time available during this period (also given).
- Thus $\mathrm{T}=\mathrm{h}+\mathrm{L}$ or $\mathrm{h}=$ \qquad .
- Example: If worker's total time is $\mathrm{T}=80$ hours per week, and chooses $\mathrm{L}=50$ hours leisure, then hours of work are $\mathrm{h}=80-50=$ \qquad .

Rewrite budget constraint

- $C=w h+V$
- $\mathrm{h}=\mathrm{T}-\mathrm{L}$
- Substituting into budget constraint:
$\mathrm{C}=\mathrm{w}(\mathrm{T}-\mathrm{L})+\mathrm{V}=$ \qquad .

Graphing the budget line

- $C=(w T+V)-w L$
- Intercept = \qquad = maximum consumption possible, working every available hour.
- Slope =
= "price" of leisure.

Endowment point

- If worker chooses not to work, then $\mathrm{L}=\mathrm{T}$ and $\mathrm{C}=\mathrm{V}$.
- This point on budget constraint is called the "endowment point."

Example of budget constraint

- Worker has T=60 hours per week available for work or leisure
- Worker is paid a wage of $w=\$ 10$ per hour.
- Worker has $\mathrm{V}=\$ 100$ in nonlabor income.
- So intercept = \$ \qquad and slope $=\$$ \qquad .

Opportunity set

- Any consumptionleisure bundle that lies on or below the constraint is available to the worker.

Conclusions

- The budget constraint shows the bundles of consumption and leisure available to a worker, given the worker's wage w, total available time T , and nonlabor income V .
- The intercept shows \qquad consumption possible, working every available hour.
- The slope equals - \qquad and shows the " \qquad " of leisure.

OPTIMAL CHOICE OF HOURS OF WORK

- What does it mean for a worker to "do the best they can with what they have"?

Optimal choice

- How will workers choose among bundles in their opportunity set?
- We assume that workers \qquad
- Formally, we assume that workers maximize utility subject to their budget constraint.

Graphical implications

- This means they choose best bundle of C and L that they can afford, going to the
\qquad indifference curve
attainable in the opportunity set.
- For now, we assume they set their own hours of work, so they can choose any level of L between zero and total available time T .

Where is the best bundle?

- Bundles at intersections between budget constraint and indifference curves are clearly \qquad the best.
- Can reach a higher indifference curve.

Best bundle: graphical example

- Suppose worker \#2's indifference curves are as shown.
- Worker \#2 will choose $C^{*}=\$$ \qquad _ ,
$\mathrm{L}^{*}=$ \qquad hours,
- Implicitly, worker \#2 is choosing $\mathrm{h}^{*}=$ \qquad hours of work. hours of

Algebra of tangency condition

- At tangency, slope of budget line equals slope of indifference curve: $-\mathrm{w}=-\mathrm{MRS}$.
- Multiplying both sides by (-1) gives

$$
w=M R S=\frac{M U_{L}}{M U_{C}}
$$

- This equation, together with budget equation can be used to solve for the best bundle algebraïcly.

Best bundle: algebraic example

- Suppose a worker has utility function $U=f(C, L)=C(L-6)$.
- We showed in previous slideshow that, with this utility function, $\mathrm{MU}_{\mathrm{L}}=\mathrm{C}$ and $\mathrm{MU}_{\mathrm{C}}=\mathrm{L}-6$, so MRS $=\frac{M U_{L}}{M U_{C}}=$

Best bundle: algebraic example Tangency condition

- Suppose this worker can earn a wage of $\mathrm{w}=\$ 15$.
- Tangency requires \qquad _.
- So the tangency condition is
- Note: two unknowns in this equation.

Best bundle: algebraic example Budget constraint

- Now suppose this worker has $\mathrm{T}=80$ hours per week available for work or leisure, and enjoys $V=\$ 60$ per week of nonlabor income.
- If enjoyed NO leisure ($\mathrm{L}=0, \mathrm{~h}=\mathrm{T}=80$), then would enjoy consumption of $(15 \times 80+60)=\$$ \qquad (intercept).
- Worker's budget constraint is thus C = \qquad -.

Best bundle: algebraic example

Solution

- The tangency condition $15=\frac{C}{(L-6)}$ implies

$$
C=15 \times(L-6)=15 L-90 .
$$

- Set this equal to the budget constraint

$$
\mathrm{C}=1260-15 \mathrm{~L} \text { and solve. }
$$

- L* $=$ \qquad hours of leisure.
- $\mathrm{C}^{*}=\$$ \qquad of consumption.

Best bundle: algebraic example

Hours of work

- Total available time is $\mathrm{T}=80$ hours, so implicitly chooses to work $h^{*}=\mathrm{T}$ - L*
$=$ \qquad hours.

Conclusions

- We assume workers "do the best they can with what they have."
- Graphically, worker chooses leisureconsumption bundle at \qquad between budget constraint and highest attainable indifference curve.
- Algebraically, worker chooses bundle satisfying tangency condition (__= and equation for budget line.

CHANGES IN NONLABOR INCOME

- Will a worker work more or fewer hours if nonlabor income increases?

Changes in circumstances

- Our model assumes workers "do the best they can with what they have."
- We can use model to predict how workers respond to changes in nonlabor income or wages.
- We assume their preferences (utility function, indifference curves) remain \qquad .

Changes in budget constraint

- If the budget constraint changes shape, people respond by making new choices.
- Can we predict whether labor supply will increase or decrease?

Increase in nonlabor income

- Suppose a worker
- wins a lottery
- unexpectedly inherits money from a distant relative
- enjoys an rise in value of stock portfolio.
- How does the worker's budget constraint change?
- How will the worker respond?

Effect of increase in nonlabor income on budget constraint

- Since w does not change, slope does not change.
- But V increases so intercept increases.
- So budget constraint shifts \qquad in parallel fashion.

Example of increase in nonlabor

 income- Worker has T=60 hours available, is paid wage of $w=\$ 10$ per hour.
- Initially, worker has $\mathrm{V}=\$ 100$ in nonlabor income.
- Then nonlabor income increases to $\mathrm{V}=\$ 300$.
- Budget constraint then shifts \qquad -

Normal goods

- A good is called a "normal good" if people buy more of it when their incomes rise-that is, when their budget constraints shift up in
\qquad fashion.
- All broad categories of goods are normal goods-food, clothing, energy, health care, housing, transportation, etc.
- We assume that consumption and leisure are
\qquad goods.

New choice

- "Normal goods" assumption implies that new choice will be above and to the right of old choice.
- Both C* and L*

Example of new choice
Assume nonlabor income increases from \$100 to
\$ \qquad . Then...

- C* increases from $\$ 500$ to \$ \qquad .
- L* increases from 20 hours to \qquad hours.
- Hours of work h* 40 to \qquad from

Conclusions

- If nonlabor income increases, a worker's budget constraint shifts up in parallel fashion.
- Economic theory predicts the worker will work \qquad hours.
- This assumes that consumption and leisure are \qquad goods.

CHANGES IN THE WAGE

- Will a worker work more or fewer hours if the wage increases?

Increase in the wage

- Suppose a worker enjoys an increase in the wage.
- How does the worker's budget constraint change?
- How will the worker respond?

Effect of increase in wage on budget constraint

- Endowment point remains fixed.
- But budget constraint becomes steeper, since slope $=$ - \qquad .

Example of increase in wage

- Assume worker has $\mathrm{T}=60$ hours available, and has $\mathrm{V}=\$ 100$ in nonlabor income.
- Initially, wage is $\mathrm{w}=$ \$ \qquad .
- Then wage rises to $\mathrm{w}=\$ 15$.
- Budget constraint then

If wage increases, will worker choose to work more or less?

- In this graph, the worker has chosen more leisure L^{*}, and therefore \qquad

If wage increases, will worker choose to work more or less? (cont'd)

- In this graph, the worker has chosen less leisure L^{*}, and therefore hours of work h^{*}.

Conflicting forces

- The ambiguity is real.
- A wage increase creates two conflicting forces: an \qquad effect and a effect.
- Both effects push the worker to spend more on consumption C^{*}.
- But they push in \qquad directions on leisure L^{*} and work hours h^{*}.

Graphing the income effect

- Pretend the worker enjoyed an increase in nonlabor income.
- Move the budget line up in fashion till tangent to the new indifference curve.

Income effect of a wage increase

- An increase in the wage is similar to an increase in nonlabor income in that the opportunity set \qquad -
- Like an increase in nonlabor income, an increase in the wage encourages the worker to purchase \qquad consumption and
\qquad leisure.
- "Purchasing" more leisure means working
\qquad hours.

Graphing the income effect (cont'd)

- New choice will be above and to the right of the old choice.
- Both C* and L*
because they are normal goods.
- Hours of work h^{*}
\qquad _.

Substitution effect of a wage increase

- At the same time, an increase in the wage implies a rise in the relative \qquad of leisure.
- This should encourage the worker to "purchase" \qquad leisure and more goods.
- "Purchasing" less leisure means working
\qquad hours.

Graphing the substitution effect

- Now compare choice on pretend budget line with choice on new, real budget line.
- Curvature of indifference curve implies that new, real choice is above and to the left.

Graphing the substitution effect

Example 1: income and substitution

 effects on leissure L*- Income effect increases L* from \qquad to
$\overline{\text { Substitutiours. }}$
- Substitution effect decreases L* from
\qquad to \qquad hours.
- Total effect decreases L* from \qquad to
\qquad hours.

If wage increases, will worker choose to work more or less?

- Income and substitution effects push the worker in \qquad directions on leisure L* and work hours h^{*}.
- Which effect dominates depends on the worker's individual \qquad _.
- People with different preferences may respond differently to a wage increase.

Example 1: income and substitution effects on hours of work h*

- $\mathrm{h}^{*}=60-\mathrm{L}^{*}$.
- Income effect decreases h^{*} from \qquad to
\qquad hours.
- Substitution effect increases h^{*} from
\qquad to \qquad hours.
- Total effect increases h^{*} from \qquad to
\qquad hours.

Example 2: income and substitution

 effects on leisure L*- Income effect increases L* from \qquad to
\qquad hours.
- Substitution effect decreases L* from
\qquad to \qquad hours.
- Total effect increases L* from \qquad to
\qquad hours.

Example 2: income and substitution effects on hours of work h^{*}

- $h^{*}=60-L^{*}$.
- Income effect decreases h^{*} from \qquad to
\qquad hours.
- Substitution effect increases h^{*} from
\qquad to \qquad hours.
- Total effect decreases h^{*} from ___ to
\qquad hours.

Summary of examples 1 and 2

- In example 1, the worker's substitution effect was \qquad than the income effect.
- An increase in the wage caused this worker to work \qquad hours.
- In example 2, the worker's substitution effect was \qquad than the income effect.
- An increase in the wage caused this worker to work \qquad hours.

Conclusions

- If the wage increases, a worker's budget constraint rotates, hinged at the endowment bundle.
- The income effect encourages the worker to work \qquad hours while the substitution effect encourages the worker to work \qquad hours.
- Without more information on the individual worker's preferences, economic theory cannot predict which effect will dominate.

LABOR SUPPLY CURVES

- How does the wage affect the decision to work?
- What is the difference between individual and market labor supply?

Individual versus market labor supply

- Quantity of labor supplied to a particular labor market depends on the wage two ways:
(1) Through changes in the number of (the "intensive margin").
(2) Through changes in the number of actually working
(the "extensive margin").

Corner solutions

Some people may choose not to work at all ($h^{*}=0$), especially if they

- face low wage w,
- have high nonlabor income V.

Deciding to work

- If w rises above MRS at corner, then person chooses $\mathrm{h}^{*}>0$.
- Begins working.

MRS at corner solutions

- \qquad a tangency.
- Indifference curve is budget constraint.
- MRS

MRS w. than

The reservation wage

- The lowest wage that will induce people to work is called the "reservation wage."
- Equal to at endowment point.

Computing reservation wage: example 1

- Suppose a person
- has utility function $\mathrm{U}=\mathrm{C}(\mathrm{L}-10)$
- enjoys $\mathrm{V}=\$ 200$ of nonlabor income per week.
- has a total of $\mathrm{T}=60$ hours available per week.
- It can be shown that this person's MRS
$=M U_{\mathrm{L}} / \mathrm{MU}_{\mathrm{C}}=\mathrm{C} /(\mathrm{L}-10)$.
- Substituting, the person's reservation wage = \qquad $=\$$ \qquad .

Computing reservation wage: example 2

- Suppose a person
- has utility function $\mathrm{U}=(\mathrm{C}-50) \mathrm{L}$
- enjoys $\mathrm{V}=\$ 400$ of nonlabor income per week.
- has a total of T=70 hours available per week.
- It can be shown that this person's MRS
$=M U_{\mathrm{L}} / \mathrm{MU}_{\mathrm{C}}=(\mathrm{C}-50) / \mathrm{L}$.
- Substituting, the person's reservation wage = \qquad = \$ \qquad .

What happens when wage rises above reservation wage?

- Income and substitution effects push in
directions.
- Hours of work h* can either increase or decrease.
- In the following examples, w rises from \$2 to \$8 to \$15.

Possible shapes of individual labor supply curves

- Example 1 shows
labor supply curve.
- Substitution effect dominates income effect.
- Increase in wage w always brings in hours of work h^{*}.
- Example 2 shows
labor supply curve.
- When the wage rises high enough, income effect dominates substitution effect.
- Increase in wage w eventually brings \qquad in hours of work h^{*}.

Individual labor supply on average

- Thus, individual labor ${ }^{w}$ supply slopes up at first.
- Corner effect.
- Then roughly vertical for many people.
- Substitution and income effects roughly equal.

Aggregate labor supply (cont'd)

- For a particular labor market (occupation or region) must also include movement of workers \qquad .
- For a particular firm, must also include movement of workers \qquad
\qquad _.

Aggregate labor supply

- Labor supply to whole economy reflects changes at the:

```
•
    existing workers).
.
``` \(\qquad\)
``` margin (changes in
```

participation).

Aggregate labor supply to ...

Whole economy	Particular labor market	Particular firm
${ }^{*} \uparrow$		
Total hours	Total hours	Total hours

Conclusions

- The lowest wage at which an individual is willing to work is called the \qquad wage.
- Individual labor supply curves do not necessarily slope up due to conflict between and \qquad effects.
- But aggregate labor supply does, due to changes in labor force participation.
- Labor supply is flatter (more elastic) at the level of a particular market and even flatter (nearly
individual firm.

ELASTICITIES OF INDIVIDUAL LABOR SUPPLY

- Do people's labor supply curves slope up or down?
- How responsive are they to the wage?

Measuring responsiveness

- The most convenient way to measure how strongly hours of work respond to wages is with an elasticity.
- Elasticity of h with respect to w is defined as

$$
\varepsilon_{h}^{s}=\frac{\% \text { change } h}{\% \text { change } w}
$$

measured along the individual labor
\qquad curve.

Why not use slope of supply curve?

- Slopes change depending on units of measure.
- Wages might be quoted in today's dollars, 1950 dollars, euros, yen, etc.
- Wages might be measured per hour, per week, per month, or per year.
- Hours might be measured per day, per week, per month, or per year.
- Elasticities are pure numbers. They do
\qquad change with units of measure.

Examples

- Suppose a 10% increase in wage causes hours of work to increase by 3%.
- Then $\varepsilon_{h}{ }^{s}=\frac{\% \text { change } h}{\% \text { change } w}=\frac{3 \%}{10 \%}=$ \qquad -
- Alternatively, suppose a 20% increase in wage causes hours of work to decrease by 2%.
- Then $\varepsilon_{h}{ }^{s}=\frac{\% \text { change } h}{\% \text { change } w}=\frac{-2 \%}{20 \%}=$ \qquad —.

Elasticity and the shape of labor supply

Size of $\varepsilon_{h}{ }^{s}$

If $\varepsilon_{h}{ }^{s}>1 \ldots$

- \% change in hours \% change in wage.
- We say labor supply is " \qquad ."
If $0<\varepsilon_{h}{ }^{s}<1 \ldots$
- \% change in hours $\%$ change in wage.
- We say labor supply is " \qquad .$"$

$$
\text { Sign of } \varepsilon_{h}{ }^{s} \text { (+ or -) }
$$

If $\varepsilon_{h}{ }^{s}$ is positive...

- Then the higher the wage, the \qquad hours people work.
- Substitution effect is \qquad than income effect.
If $\varepsilon_{h}{ }^{s}$ is negative...
- Then the higher the wage, the \qquad hours people work.
- Substitution effect is \qquad than income effect.

How are labor supply elasticities measured in the real world?

- Using datasets on individual workers, researchers estimate equations like

$$
h=\beta w+\gamma V+\text { other variables }
$$

using \qquad .

- Then compute $\varepsilon_{h}{ }^{s}=\beta \times \frac{\text { average } w}{\text { average } h}$.
- Large number of studies, with a range of estimates for β and $\varepsilon_{h}{ }^{s}$.

Datasets

- Datasets are usually from large surveys of workers, many conducted by government.
- For workers paid by the hour, h and w are usually reliable.
- For workers who are not paid by the hour...
- h is worker's own (rough) estimate.
- w is imputed as total earnings/h.

More problems with data

3. If $\mathrm{h}=0$ we do not observe the person's (potential) wage.

- Usually persons with low w or high V.
- Loss of these data
 biases the LS estimates.
- Makes estimate of β too \qquad .

Problems with data

1. For workers who are not paid by the hour...

- If estimate of h is too high, then w is too low (and vice versa).
- Introduces a false \qquad correlation between h and w .

2. Nonlabor income tends to be high for older workers who prefer to work and save more.

- Introduces a false \qquad correlation between h and V .

Elasticity of labor supply for prime-age men

- Consensus estimate, correcting for data problems, is roughly
$\varepsilon_{h}{ }^{s}=$ \qquad
- Implies that labor supply curve is nearly
\qquad
bending back slightly.

Does an elasticity value of -0.1 for men make sense?

- Nearly vertical
- Slightly backwardbending
- Most prime-age age men work full time, despite variety of wages.
- Hours of work fell in early $20^{\text {th }}$ century, as wages rose.

Elasticity of labor supply for women

- Consensus estimate, correcting for data problems, is roughly $\varepsilon_{h}{ }^{s}=$ \qquad -
- Implies that labor supply curve is
\qquad -.

Does an elasticity value of +0.2 for women make sense?

- This value shows that working women's hours of work are \qquad responsive (but not very) to the wage.
- However, women's labor-force participation seems to be \qquad responsive to the wage. res

Other possible reasons for growth in women's labor force participation

- Decline in family size.*
- New labor-saving technology in the household.
- Changes in cultural and legal attitudes.
- Availability of oral contraceptives beginning in 1960s.

Household decision-making

- An increase in husband's wage tends to
\qquad wife's labor force participation.
- Similar to effect of nonlabor income.
- However, wife's wage has little effect on husband's labor force participation.

Conclusions

- Elasticity of labor supply $=\varepsilon_{h}{ }^{s}=\frac{\% \text { change } h}{\% \text { change } w}$ shows responsiveness of hours to wages.
- Elasticity for prime-age men \approx \qquad , so income effect is slightly larger than substitution effect.
- Elasticity for women \approx \qquad so substitution effect is slightly larger than income effect.

HOUSEHOLD SPECIALIZATION

- Who works in the labor market?
- Who works at home?

Worker's budget line

- Individual worker confronts budget line, showing tradeoff between "leisure" and consumption goods (purchased from labor earnings).

L= leisure
"Leisure" time used for household production

- In fact, "leisure" time is often used for production of goods and services at home.
- Examples: cooking, cleaning, home repair, caring for children or the elderly.

Individual worker's choice

- If the worker is single, then that she/he will simply choose most preferred affordable combination of market and household goods.

Individual worker's production-

 possibility curve: example- Suppose Worker A has 10 hours per day for market work or production of household goods.
- Market wage = $\$ 20 / \mathrm{hr}$.
- Household productivity $=10 / \mathrm{hr}$.

Another worker's productionpossibility curve

- Now suppose Worker B also has 10 hours per day for market work or production of household goods.
- Market wage = \$10/hr.
- Household productivity $=25 / \mathrm{hr}$.

A household

- Suppose Workers A and B form a household, pooling their resources and consuming market and household goods together.
- How will they allocate their time?
- To answer this, first find their combined

Specialization

- Total output of the household is maximized if each \qquad according to comparative advantage.
- Another way to see this is to plot the production possibility curve for the
\qquad —.

Household production-possibility curve (cont'd)

- Suppose Worker A is working 10 hours per day in labor market.
- If more market goods are needed, then what?
enters labor market.

Comparative advantage
 = lower opportunity cost

	Worker A	Worker B
Market wage	\$20/hr	$\$ 10 / \mathrm{hr}$
Household productivity	$10 \mathrm{H} / \mathrm{hr}$	$25 \mathrm{H} / \mathrm{hr}$
Opp. cost of market goods (household goods sacrificed per \$ of market goods)		
Opp. cost of household goods (\$ of market goods sacrificed per household good)		

Household production-possibility curve

- Suppose initially both workers spend 10 hours per day in household production.
- If market goods are needed, who should enter labor market?
- Worker with lowest
of market goods.

Optimal choice

- Which point on production-possibility curve will household choose?
- Three possibilities, depending on preferences (indifference curves).

Possible choice (1)

- Worker A works in labor market

Worker B not in labor market.

Possible choice (3)

- Worker A works in labor market full time, Worker B works in labor market \qquad .

Another sub-optimal choice

- Reverse specialization, contrary to comparative advantage.

Possible choice (2)

- Worker A works in labor market

Worker B not in labor market.

Sub-optimal choice

- One outcome that will not be chosen is for
\qquad to work in the labor market part time.
- That choice would put the household
\qquad its
production-possibility curve.

Comparative statics

- Suppose initially we have complete specialization.
- What happens if Worker B's market wage rises?
- If wage rises enough, Worker B \qquad —

The Becker model

- This model of household specialization is due to famous labor economist Gary Becker* (1930-2014).
- As it stands, the model cannot predict which gender will specialize in market work.
- But Becker went further, suggesting that for biological reasons, women had an absolute advantage in caring for children and therefore in home production.

Becker, G. S. (1981). A treatise on the family. Cambridge, Massachusetts: Harvard University Press.

What can this household model explain?

1. On average, women do more household work and men do more market work.
2. Over the last 60 years, women's labor force participation has \qquad . Comparative advantage has probably shifted because:

- Fewer market jobs require physical strength.
- Home appliances have reduced skill requirements for home production.
- Families have become smaller, some couples having no children.

Alternate explanations

- Another explanation for specialization is social expectations or \qquad .
- The increase in women'slabor force participation might be caused by cultural change-the decline of gender norms.
- Many studies have tried to test the two models using data.

Evidence

- A recent study* analyzes data from Australia on market wages and time use by couples.
- Finds that 78% of couples specialize according to gender.
- But only 61% specialize according to market wages.
- Same-sex couples' specialization is not related to market wages.
*Siminski, P., \& Yetsenga, R. (2020). Rethinking Specialization and the Sexual Division of Labor in the 21st Century. Working Paper Series. University of Technology Sidney.

Conclusions

- When two workers form a household, they can gain from each specializing in either the labor market work or home production, according to \qquad .
- The model predicts that at least one will completely specialize.
- However, there is evidence that couples do not always specialize according to comparative advantage.

FERTILITY

- Why did Thomas Malthus believe overpopulation was inevitable?
- Did his prediction come true?
- How can modern economics explain why fertility rates have fallen?

Income, fertility and population

- Fertility = birth rate.
- Total fertility = average number of children a woman has in her lifetime.
- Thomas Malthus, in Essay on the Principle of Population, 1798, argued that fertility was ___ related to income, leading to overpopulation and poverty.

The Malthusian model

Two key assumptions:

1. Production has only one variable input, labor, subject to \qquad returns.
2. The level of output required to sustain the population is \qquad to the population.

Graphing the aggregate production

 function- Write aggregate production function as: $Q=F(E)$.
- Graph production function as upwardsloping curve.
- Diminishing returns to labor implies slope
\qquad as E increases.
$E=$ Labor input

Subsistence in the Malthusian model

- Suppose the subsistence level of output per person is fixed quantity a.
- Labor force is some fraction b of the total population: $E=b \times P O P$.

$$
P O P=(1 / b) E
$$

- Total output required to sustain a given labor force is given by: $\mathrm{Q}=\mathrm{a} \times \mathrm{POP}$
$=$ \qquad -.

Graphing the subsistence line in the Malthusian model

- Subsistence line shows output required to sustain any given level of labor input.
- Graph of $Q=(a / b) E$ is an upward-sloping line through origin.
- Slope = \qquad .

What if output is above the level required for subsistence?

- This occurs at any E where the aggregate production function is above the subsistence line.
- In that case, the population and E must \qquad .

Malthus's dismal conclusion

- Output Q always converges to the subsistence level
\qquad
- Output per worker converges to \qquad —.
- "Iron Law of Wages"

Quote from Malthus

"Must it not then be acknowledged ...
"That the increase of population is necessarily limited by the means of subsistence,
"That population does invariably increase when the means of subsistence increase. And that the superior power of population is repressed, and the actual population kept equal to the means of subsistence, by misery and vice."

What if output is below the level required for subsistence?

- This occurs at any E where the aggregate production function is below the subsistence line.
- In that case, the population and E must \qquad -.

What if the production function

 shifted up?- What if new land were brought under cultivation?
- Eventually, population would \qquad and output per worker would converge to
\qquad -.

Malthusian prediction versus reality

- Population has indeed grown, but income per capita has grown also.
- Meanwhile, fertility has \qquad .
- Fertility rates in western Europe and North America began to fall beginning around 1900.
- Fertility rates in Asia began to \qquad in the middle $20^{\text {th }}$ century.
- Fertility rates in Latin America and Africa have recently begun to \qquad _.

In recent years, total fertility has decreased worldwide

Source: U.N. Department of Economic and Social Affairs, World Population Prospects 2019.

Modern economic theory of fertility

- Began with Gary Becker (1960).
- Views children as a "good," valued by parents but costing resources:
shelter, education, etc.
- \qquad : parents must reduce work hours to care for children.
- Faced with these costs, parents \qquad ـ.

Notation

I = total income of parents, assumed fixed.
C = number of children
$\mathrm{P}_{\mathrm{C}}=$ price of children = total cost of raising a child.
$\mathrm{G}=$ quantity of other goods.
$P_{G}=$ price of other goods.

Choice

- Parents value both children and other goods.
- They choose point on budget constraint touching highest attainable indifference curve.
- Tangency: $\mathrm{MRS}=\mathrm{P}_{\mathrm{C}} / \mathrm{P}_{\mathrm{G}}$.

Budget constraint

- Budget constraint is income = spending, or $\mathrm{I}=\mathrm{P}_{\mathrm{C}} \mathrm{C}+\mathrm{P}_{\mathrm{G}} \mathrm{G}$.
- Slope $=-P_{C} / P_{G}$.
- Intercept on G axis $=1 / P_{G}$.
- Intercept on C axis $=\mathrm{I} / \mathrm{P}_{\mathrm{C}}$.

Effect of increase in income on budget constraint and choice

- Causes budget constraint to shift up in
\qquad fashion.
- Assume children are a normal good.
- Then parents will choose more goods and
\qquad children.

Effect of increase in price of children on budget constraint

- Intercept on C axis $=1 / P_{C}$.
- Since P_{C} increases, this intercept
- Budget constraint rotates in.

Graphing the income effect

- Pretend the parents suffered a decrease in income.
- Move the budget line down in \qquad fashion till tangent to the new indifference curve.

Effect of increase in price of children on choice

- Income effect: opportunity set shrinks, encouraging parents to choose fewer goods and
\qquad children.
- Substitution effect: relative price of children rises, causing parents to choose more goods and
\qquad children.

Graphing the income effect (cont'd)

- New choice will be below and to the left of the old choice.
- Both G* and C*
because they are normal goods.

Graphing the substitution effect

- Now compare choice on pretend budget line with choice on new, real budget line.
- Curvature of indiff. curve implies that new, real choice is above and to the left.
- G* increases but C*

Summary: income and substitution effects

- When the price of children rises, both income and substitution effects push parents to choose children.

Why did the price of children P_{C} increase?

- Movement from farms (where children can help with chores) to cities.
in women's market wages.
- Sometimes governments try to change the price of children...
tax benefits (e.g., Hungary).
China).
P_{C} through penalties (e.g.,

Conclusions

- Thomas Malthus argued in 1798 that fertility was \qquad related to income, so that advances in income would be undercut by overpopulation.
- Modern theory says fertility is also children.
- Modern theory can explain why fertility rates
when women's wages rise.

WELFARE PROGRAMS

- What are the effects of welfare programs on labor supply?

Welfare and work incentives

- Welfare programs, intended to help poor people, change their budget constraints and thereby change their choices.
- We will analyze

1. a simple cash grant program.
2. a cash grant reduced by earnings.
3. a cash grant partly reduced by earnings.
4. a wage subsidy.

Using the theory of labor supply

- A parallel shift in the budget line is equivalent to an increase in nonlabor income.
- If a worker is already working, they will work
\qquad hours.
- A clockwise rotation of the budget line is equivalent to an increase in the wage.
- If the worker is not already working, they will be
\qquad
- If the worker is already working, economic theory \qquad predict what they will do.

1. Cash grant program

- Suppose program offers cash grant of $\$ 300$ per week to persons who have no income.
- However, if the person works any hours, they lose the cash grant.
- Puts spike in budget line at $\mathrm{L}=\mathrm{T}=60$ hours.

Labor supply under
cash grant program

- Now the person will choose hours of work $h^{*}=$ \qquad hours.
- Program creates disincentive to work.

Labor supply under cash grant reduced by earnings

- Again, the person will choose hours of work $h^{*}=$ \qquad hours.
- Effectively, a ___ $\%$ \% tax on earnings up to \$300.
- Program again creates disincentive to work.

Labor supply under cash grant partly reduced by earnings

- Now it is more likely that the person will continue to work some hours.
- However, the person will surely work __ hours than without the program.
- How do we know?

2. Cash grant reduced by earnings

- Most programs allow the person to keep some of their cash grant even if they work.
- Suppose the person's grant is reduced by $\$ 1$ for each $\$ 1$ of earnings.
- Creates segment of budget constraint.

3. Cash grant partly reduced by earnings

- More common rule is to take away part of earnings, like a tax.
- Suppose the person's grant is reduced by $\$ 0.67$ for each $\$ 1$ of earnings.
- New segment has slope net wage $=-w(1-0.67)=$ \$-10 (0.33) = \$- \qquad .

Income and substitution effects with

 cash grant partly reduced by earnings- Program creates both income and substitution effects.
- Program expands the person's opportunity set. Since leisure is normal good, income effect should cause an increase in leisure hours L^{*} and a
\qquad in work hours h^{*}.
- Program reduces person's net wage w. Since leisure is now "cheaper," substitution effect should also cause an increase in leisure hours L* and a
\qquad in work hours h^{*}.

Graphing the income and substitution effects

- Point A is choice without program.
- Point C is choice with cash grant partly reduced by earnings.
- How do we know that point C must be to the
\qquad of point A?

Graphing the income effect

- Dotted line is parallel to original budget constraint.
- Movement from A to B is income effect, causing leisure hours L* to and work hours h^{*} to
\qquad .

What happens in practice?

Graphing the substitution effect

- Dotted line is tangent to same indiff. curve as program line segment.
- Movement from B to C is subst. effect, also causing leisure hours L* to and work hours h^{*} to

"Universal Basic Income"*

- Proposals vary, but most would replace existing welfare programs with a cash grant to every person or every household.
- In short run, income effect only: \qquad in work hours (h).
- In long run, possible benefits for children later in life (health, educational attainment, earnings).
- However, UBI would be MUCH more expensive than current programs and more of the benefits would go to people already well off.
*Similar to proposals for "Negative Income Tax" in 1960s and 1970s.

4. Wage subsidy

- Alternative approach to helping poor people is wage subsidy.
- Instead of increasing nonlabor income V , a wage subsidy increases wage w .

Predicted effect of wage subsidy on labor-force participation

- Suppose person is not yet working (because w < reservation wage).
- Then a wage subsidy makes the person work. likely to

Conclusions

- Traditional welfare programs create income and substitution effects.
- Both effects tend to \qquad labor force participation and
\qquad hours of work h* for those already working.
- A wage subsidy, however, \qquad labor force participation.

EARNED INCOME TAX CREDIT

- What is the Earned Income Tax Credit (EITC)?
- How does it affect labor supply?

Earned Income Tax Credit (EITC)

- Program began in 1975, expanded substantially since then.
- Administered by \qquad not welfare agencies.
- Works like a wage subsidy, but with a cap and a phase-out.
- Cap and phase out create \qquad in budget constraint.

Benefits and eligibility raised over time

- 1986: Benefits indexed to inflation.
- 1990: Benefits raised and increased further for families with two or more children.
- 1993: Benefits raised sharply and small benefits given to families without children.
- 1996: Benefits raised sharply again. California, Berkeley.

EITC: example

- Suppose a household consists of a woman and two dependent children.
- In 2005, the woman could claim 40% of earnings as long as earnings were less than \$11,000.
- Thus cap or maximum credit $=\$ 11,000 \times 40 \%$ = \$ \qquad -.

EITC net wage: example with market wage $w=\$ 10$ per hour

- Then net wage = \$ \qquad until she has worked $\$ 11,000 / \$ 10=$ \qquad hours.
- Then net wage = \$ \qquad until she has worked $\$ 14,370 / \$ 10=$ \qquad hours.
- Then net wage falls to $\$$ \qquad until she has worked $\$ 35,263 / \$ 10=$ \qquad hours.
- Thereafter, no longer eligible for EITC.

Using the theory of labor supply

- A parallel shift in the budget line is equivalent to an increase in nonlabor income.
- If a worker is already working, they will work
\qquad hours.
- A rotation of the budget line is equivalent to an increase in the wage.
- If the worker is not already working, they will be likely to work.
- If the worker is already working, economic theory \qquad predict what they will do.

Effect of EITC on hours of work:

case 1

- Suppose that EITC induces person to choose a point on lower segment.
- For this person, EITC \approx increase in \qquad -
- h* \qquad

Effect of EITC on labor supply

- If the person was initially not working at all, then the EITC may raise the net wage above the person's \qquad wage.
- So theory clearly predicts that EITC should
\qquad labor force participation, unlike traditional welfare programs.
- If the person was initially working, then the
effect of EITC is more complicated to predict.

Effect of EITC on hours of work:
 case 2

- Suppose that EITC induces person to choose a point on middle segment.
- For this person, EITC \approx increase in \qquad —

Effect of EITC on hours of work:
 case 3

- Suppose that EITC induces person to choose a point on top segment.
- For this person, EITC \approx cash grant partly reduced by earnings.
- ${ }^{*}$ * \qquad .

Effect of EITC on hours of work: case 5

- Suppose that EITC induces person to choose the lower kink.
- One can show that this case is also ambiguous, like case 1.
- h^{*} \qquad

Difference-in-differences estimates of

 effect of EITC expansion in 1986| Group | LFP
 before | LFP
 after | Diff. | Diff.-in-
 diff. |
| :--- | :---: | :---: | :---: | :---: |
| Treatment group--
 Eligible for EITC:
 low-income women
 with children | 72.9% | 75.3% | | |
| Control group--Not
 eligible for EITC:
 low-income women
 without children | 95.2% | 95.2% | | |

Effect of EITC on hours of work:
 case 4

- Suppose that EITC induces person to choose the upper kink.
- One can show that h^{*} will be even less than with an increase in nonlabor income.
- h^{*} \qquad .

What happens in practice?

- EITC was expanded sharply in 1986.
- Data show that labor force participation (LFP) of eligible groups grew from 72.9\% to 75.3\%.
- This seems to confirm theory.
- But wait! Did other things cause the increase in LFP? Expanding economy? Long-run social trends toward increased LFP?
- Should compare with a \qquad group.

Findings from other studies

- EITC increases labor force participation, as predicted by theory.
- EITC has little effect on hours worked.
- Take-up rates are much higher than for other welfare programs.

Other effects of EITC

Expansion of EITC in 1990s

- lowered child poverty rates.
- improved the health of mothers and children.
- increased children's educational achievement (test scores and educational attainment).

Conclusions

- The Earned Income Tax Credit tends to labor force participation.
- However, it can either increase or decrease hours of work h^{*}.

LIFE-CYCLE LABOR SUPPLY

- How should LFP and hours of work vary over one's lifetime, according to economic theory?
- How do they vary in fact?

Actual path of wage rate over life cycle

- On average, wage rate is low when person is young,
- rises until about age 50 ,
- stable or falls slightly after age 50.
- How should labor force participation and hours of work respond to this pattern?

Limitations of our simple static model

- Labor force participation should be
\qquad when wage is higher.
- Hours of work \qquad be predicted because income and substitution effects push h^{*} in \qquad directions.
- In our model, h^{*} is decided independently each period without planning ahead.
- No \qquad of leisure in different periods.
- No \qquad of consumption in different periods.
- No \qquad for, or borrowing against, the future.
- This kind of model is called a static model.

A dynamic model

- Suppose people expect the wage pattern showed earlier, and plan ahead.
- Suppose their utility function depends on consumption and leisure in \qquad period of one's lifetime:

$$
U=f\left(C_{1}, L_{1}, C_{2}, L_{2}, C_{3}, L_{3}, \text { etc. }\right)
$$

- Suppose people can engage in substitution.

Constant wage rate path versus actual wage path

- Compare a hypothetical constant wage rate path with the actual path.
- How should labor force participation and hours of work respond, according to a
model?

What does a dynamic model predict?

- Labor force participation should be
\qquad when wage is higher.
- Hours of work should be \qquad when wage is higher (and leisure is more expensive). Why?
- Lowering wage in one period and raising it in another has no effect on \qquad income.
- So there is no income effect, only a

$$
\ldots \text { effect. }
$$

Labor force participation over the life cycle in fact

- Labor force participation of men peaks between about ages 25 and 45, then drops sharply.
- Labor force participation of women is similar but
- Is \qquad throughout lifetime.
- Still rising slightly from ages 25 to 45 (probably reflecting declining \qquad responsibilities).

Hours of work over the life cycle in fact

- Hours of work for men rise sharply at first, remain nearly constant between about ages 35 and 60.
- Hours of work for women are similar, but continue to rise slowly until about age 50.

Does the dynamic model fit the facts?

- Overall, dynamic model fits the facts.
- LFP and hours of work peak about the
\qquad time that the wage peaks.
- However, dynamic model does not explain
- why actual LFP \qquad so fast after age 45 , when wage is still high.
- why hours of work are nearly \qquad from ages 35 to 60 .

Conclusions

- The wage rate rises over the life cycle until about age 50, then is stable or falls slightly.
- A \qquad model of labor supply predicts that people's LFP and hours of work should follow this same pattern.
- This prediction is roughly correct, except that actual LFP drops too \qquad after age 45 and actual hours are too \qquad —.

DECLINE IN LABOR FORCE PARTICIPATION OF OLDER MEN

- What explains the decline in LFP of older men?

Labor force participation rates of older men

- LFP rates for all men fell slightly in last 60 years.
- However, LFP rates for older men fell
\qquad from 1950 to 1990.
- Declining health is not the explanation—life expectancy \qquad over this period.

Social Security earnings test for retirees

- Until 2000, Social Security benefits were reduced for retirees aged 65-69 who earned more than $\$ 17,000$ per year.
- \$1 in benefits was withheld for every \$3 earned above $\$ 17,000$-an implicit \qquad \% marginal tax.
- Test did not apply to retirees over 70.
- Test was eliminated in 2000.
- Did the test discourage work?

Partial explanations

- Increase in private pension benefits-fraction covered by pensions has increased sharply.
- Increased generosity of Social Security retirement benefits.
- Increased generosity of Social Security Disability Program.

Effect of SS earnings test on budget constraint: example

- Suppose retiree receives $\$ 10,000$ in SS benefits (nonlabor income).
- When earnings exceed $\$ 17,000$, marginal net wage falls by $1 / 3$ as benefits are withheld.
- Therefore kink occurs in budget constraint at $\mathrm{C}=\$ 10,000+\$ 17,000=\$$ \qquad _.
- Another kink occurs when all SS benefits have been withheld, when earnings reach C=\$17,000+(\$10,000×3)=\$ \qquad .

Effect of SS earnings test on labor

 supply: case 2- Suppose earnings test induces person to choose a point on middle segment.
- For this person, earnings test \approx decrease in \qquad .

Effect of SS earnings test on labor supply: case 4

- Suppose earnings test induces person to choose lower kink.
- h* \qquad

Effect of SS earnings test on labor supply: case 1

- Suppose earnings test induces person to choose a point on top segment.
- For this person, earnings test \approx decrease in \qquad

Effect of SS earnings test on labor

 supply: case 3- Suppose earnings test induces person to choose a point on bottom segment.
- For this person, earnings test has no effect.
- h* \qquad

Effect of SS earnings test on budget

 constraint: conclusion- Theory of labor supply gives little reason to think that earnings test reduced labor supply, except if person is near first kink.
- Studies of actual behavior showed effects were in fact \qquad _.

Social Security Disability Program

- Workers who become disabled can claim disability payments as long as the disability lasts.
- Before this program, disability meant instant poverty for many people.
- Benefit = retirement benefit amount worker would receive had they worked till age 65.
https://www.ssa.gov/disability/

Does the Disability Program discourage labor force participation?

- Generosity of program might encourage people to apply, who might otherwise have worked.
- In fact, there is negative correlation between receiving disability payments and labor force participation.
- But this does not prove cause and effect.
- Both outcomes could obviously be caused by a third factor: \qquad -.

Comparing outcomes with different levels of benefits

- Benefits are the same across the U.S.
- But not in Canada-Quebec has a separate program.
- Quebec's program was more generous until 1987, when benefits in rest of Canada were raised substantially.

Strict eligibility requirements

- Have to have worked a minimum amount.
- Waiting period of five months before applying.
- Applicant must often be certified by physician chosen by the government.
- Cannot earn more than certain amount ($\$ 1180$ per month in 2018).
- Cases are periodically reviewed by gov't.

Comparing outcomes with different levels of benefits: conclusions

- Raising benefits by CA\$ 1666 apparently caused employment to decrease by 2.7 percentage points.
- Increasing benefits does decrease employment.

Comparing outcomes for people rejected from the program

- One study followed people whose claims were rejected.
- 40% went back to work.
- But was that because of rejection, or because their health was better than those whose claims were approved?

Compare outcomes for applicants

 assigned to different examiners- Another study compared applicants randomly assigned to strict and lax claims examiners.
- Since randomly assigned, health was presumably similar on average.
- Those assigned to strict claims examiners were more likely to be working 4 years later.

Conclusions

- Labor force participation of men over 45 \ldots ___ sharply from 1950 to 1990.
- Increased generosity of private pensions, Social Security, and disability programs may explain part of the decrease.
- The Social Security earnings test, abolished in 2000, probably did \qquad play a role.
- The Social Security Disability Program
\qquad discourage LFP and employment.

PRODUCTION

- Why is a worker valuable to a firm?

Workers in production process

- Workers are hired to help produce goods and services for sale.
- Demand for workers is \qquad from demand for the firm's output: goods and services.
- Workers contribute to output via some sort of
\qquad process: making cars, growing food, building houses, serving meals, etc.

Notation: quantities

- We can model a generic production process with a production \qquad $\therefore \quad q=f(E, K)$
$\mathrm{q}=$ quantity of output
$\mathrm{E}=$ labor input = worker-hours hired by firm $\mathrm{K}=$ total amount of other inputs hired by firm, such as machines, buildings, land, energy, raw materials, etc.
- Output depends on both labor input and other inputs.

Example 1: numerical example of a production function: $q=f(E, K)$

Example	$K=10$ machines	$K=20$ machines	$K=30$ machines
E=20 hours	$q=100$ tons	$q=140$ tons	$q=170$ tons
$E=60$ hours	$q=150$ tons	$q=200$ tons	$q=240$ tons

Algebraic examples of production functions: $q=f(E, K)$

- $q=5 E+3 K$.
- $q=E^{1 / 2} K^{1 / 2}$.
- $q=E^{2 / 3} \mathrm{~K}^{1 / 3}$.
- $q=\left(E^{1 / 2}+K^{1 / 2}\right)^{2}$.
- $q=10 \min \{E / 6, K / 2\}$.

Simplifying assumptions

- Firm produces only one kind of output.
- Production depends only on workers'
\qquad E.
- 1 worker working 40 hours a week contributes as much as 5 workers working 8 hours a week.
- All workers have the same skill level-
\qquad _.

Example 2: production function with K held constant

E	\boldsymbol{q}
0 hours	0 tons
10 hours	60 tons
20 hours	200 tons
30 hours	270 tons
40 hours	320 tons
50 hours	350 tons
60 hours	360 tons

AP: Example 2

AP: Example 2		
E	q	AP
0 hours	0 tons	--
10 hours	60 tons	tons/hr.
20 hours	200 tons	tons/hr.
30 hours	270 tons	tons/hr.
40 hours	320 tons	tons/hr.
50 hours	350 tons	tons/hr.
60 hours	360 tons	tons/hr.

Marginal product

- Marginal product = rate at which output increases when an input increases, OR the contribution of the last unit of that input to output, holding other inputs constant.
- Marginal product = MP
= change in output / change in input
= slope of production function
$=$ \qquad

Average product

- Average product is output per worker.
- Average product = AP
= total output / total input
$=$ \qquad _.

Changes in output

- Average product is easy to compute but less relevant for managerial decisions.
- What managers really care about is the
\qquad at which output will increase if they hire more labor.

Diminishing returns

- MP may increase at first, but typically eventually
- Main reason is that we are holding K
- As we add more worker-hours, the workers must share machines.

Relationship between MP and AP

- When MP>AP, then AP must \qquad .
- When MP<AP, then AP must \qquad -.
- MP=AP only when AP is neither rising nor falling (such as when it is at its
\qquad _).

Conclusions

- Workers are hired as an \qquad to help produce some output.
- The relationship between inputs and outputs is called a \qquad function.
- \qquad product $=$ total output $/$ total input.
- \qquad product = change in output / change in input.

DEMAND FOR LABOR IN THE SHORT RUN

- How much labor will a firm want to hire in the short run?

Value of average product and value of

 marginal product- Value of average product = VAP
= output price \times AP
$=$
$=p \times(q / E)$.
- Value of marginal product $=\mathrm{VMP}$
= output price \times MP
$=$ \qquad
$=p x(\Delta q / \Delta E)$.

VMP: Example 2 with $\mathrm{p}=\$ 3$			
E	q	MP	VMP
0 hours	0 tons	6 tons/hr	/hr
10 hours	60 tons	6 tons/hr.	/hr.
20 hours	200 tons	14 tons/hr.	/hr.
30 hours	270 tons	7 tons/hr.	/hr.
40 hours	320 tons	5 tons/hr.	/hr.
50 hours	350 tons	3 tons/hr.	/hr.
60 hours	360 tons	1 ton/hr.	/hr.

VAP: Example 2 with $p=\$ 3$

E	q	AP	Value of AP
0 hours	0 tons	--	--
10 hours	60 tons	6 tons/hr.	$/ \mathrm{hr}$.
20 hours	200 tons	10 tons/hr.	$/ \mathrm{hr}$.
30 hours	270 tons	9 tons/hr.	$/ \mathrm{hr}$
40 hours	320 tons	8 tons/hr.	$/ \mathrm{hr}$.
50 hours	350 tons	7 tons/hr.	$/ \mathrm{hr}$
60 hours	360 tons	6 tons/hr.	$/ \mathrm{hr}$.

Assumption: firm maximizes profit

- Firm's profit
= revenue - cost
$=(p q)-(w E+r K)$.
- We assume a firm makes choices to maximize
\qquad (not output, not revenue, not employment).

Assumption: firm is a "price-taker"

- For the moment, we assume the firm is a small player in output and input markets.
- The firm is therefore competitive, taking all prices as \qquad —.
- The firm controls \qquad (and by implication q) but NOT p, w, or r.

Assumption: short-run time horizon

- Firm does not have time to adjust K.
- K is fixed at some predetermined level.
- Firm controls only \qquad (and by implication output q).
- What level of E should the price-taking firm choose to maximize profit?

What if VMP > wage?

- Suppose VMP = \$25 and wage = \$10.
- Then if firm hires one more hour of labor input, revenue will increase by $\$ 25$ and cost will increase by $\$ 10$. So profit will \qquad by \$ \qquad .
- Similarly, if firm hires one less hour of labor input, revenue will decrease by $\$ 25$ and cost will decrease by $\$ 10$. So profit will \qquad by \$ \qquad —.
- Clearly firm should \qquad employment!

If VMP > wage, then firm can increase profit by hiring
 \qquad labor input E

What if VMP < wage?

- Suppose VMP = \$7 and wage = \$10.
- Then if firm hires one more hour of labor input, revenue will increase by $\$ 7$ and cost will increase by \$10. So profit will \qquad by \$ \qquad _.
- Similarly, if firm hires one less hour of labor input, revenue will decrease by $\$ 7$ and cost will decrease by $\$ 10$. So profit will \qquad by \$
- Clearly firm should \qquad employment!
If VMP < wage, then firm can increase profit by hiring \qquad labor input E

> To maximize profit, hire labor input E up to the point where VMP wage

What if VMP = wage?

- Suppose VMP = \$10 and wage = \$10, exactly equal.
- Then hiring one more or one less unit of labor will have \qquad effect on profit.
- Profit is \qquad !

Example

- Suppose the wage is \$12 per hour.
- To maximize profit, the firm should hire about labor input. hours of

Clarification:

choose E where VMP slopes \qquad

- It would not make sense to choose E where VMP sloped up.
- Firm could increase profit by increasing or decreasing E !
- VMP eventually slopes down due to law of
\qquad

Clarification:

if wage > VAP, shut down

- If $w>$ VAP, then $w>p(q / E)$.
- Multiply both sides by E to get Ew > pq.
- Thus wage bill > revenue.
- Firm can cut losses by shutting down, choosing $\mathrm{E}=$ \qquad

$\mathrm{VMP}=\mathrm{w}$ condition is equivalent to short-run MC=p (cont'd)

- Now MC= Δ \qquad / Δ \qquad by definition.
- Also, cost = wE + rK .
- So Δ cost $=\mathrm{wx} \Delta \mathrm{E}$ because in the short run, the firm's cost increases only if it hires more labor input E (since w, r, and K are assumed fixed).
- So $S M C=\Delta$ cost $/ \Delta q=w x \Delta E / \Delta q$.
- So, using previous slide, $\mathrm{p}=$ \qquad .

Firm's short-run labor demand curve

- A firm's short-run labor demand curve $=\mathrm{VMP}$ provided...
- VMP slopes \qquad 8
30
3
- VMP is \qquad VAP.

$\mathrm{VMP}=\mathrm{w}$ condition is equivalent to short-run MC=p

- We have shown that at the profit-maximizing level of E,
VMP = w
or $\quad \mathrm{p} \times \mathrm{MP}=\mathrm{w}$
or $p x(\Delta q / \Delta E)=w$
or $\quad p=w \times \Delta E / \Delta q$.

From firm to industry

- What about wage changes that apply to a whole industry?
- Examples: increase in minimum wage, union wage increase, etc.
- In markets for consumer goods, we derive market demand by adding up demands of all consumers in the market.
- Market demand is the sum of all consumers' demands.
- Will that approach work for labor demand?

Market demand for a consumer good = sum of demands by all consumers

Industry demand curves for labor are different

- Unfortunately, that approach will not work for labor demand.
- Suppose the wage decreases.
- ALL firms hire more workers.
- The workers produce

Industry demand curves for labor

- Conversely, E does not decrease as much when \qquad firms suffer the same wage increase.
- Explains why unions prefer to raise wage at \ldots firms in an industry simultaneously, to preserve employment.

Conclusions

- Value of marginal product $=$ price of firm's output \times marginal product of labor input.
- In the short run, a competitive profit-maximizing firm chooses its employment level E such that VMP equals the market \qquad .
- The industry labor demand curve is elastic than the individual firm's VMP curve, because when employment increases, the market price of output p \qquad

PRODUCING OUTPUT AT MINIMUM COST IN THE LONG RUN

- How will a firm set the levels of all inputs, if it enjoys complete flexibility?

Setting levels of inputs

- Every firm must decide the levels of its inputs: workers, computers, trucks, office space, energy, etc.
- In the short run, only one input might be flexible.
- Last slideshow showed that if only labor E is flexible, the firm sets E so that VMP equals
\qquad -.

Long run time horizon

- In the long run, all inputs are flexible (or
\qquad) and can be substituted for each other.
- Suppose firm has two inputs, $\mathrm{E}=$ labor and K = physical capital, and a given production function $q=f($ \qquad).
- What levels of E and K should the pricetaking firm choose to maximize profit?

Graphing production functions

- A graphical way to represent a production function is to draw curves connecting combinations of inputs that yield the same quantity of \qquad -
- Each curve holds constant the level of q in the production function $q=f(E, K)$.
- Production functions are likely to be different in different industries, so curves are likely to be different.

| Isoquant: definition |
| :--- | :--- |
| - Input combinations on
 the same isoquant
 yield the same target
 quantity of |
| -Equation:
 target output $=f(E, K)$ |

Example of isoquant

- Suppose production function is $\mathrm{q}=E^{1 / 2} K^{1 / 2}$.
- Suppose target output is $\mathrm{q}=100$ tons.
- These combinations will produce target output: $\mathrm{E}=25$ \& K=400, $E=100 \& K=100$, $\mathrm{E}=400 \& K=25$.

Example of family of isoquants

- Again suppose production function is $\mathrm{q}=E^{1 / 2} K^{1 / 2}$.
- Which curve is for... $q=100$ tons? $q=200$ tons? $q=300$ tons? $q=400$ tons?

Marginal rate of technical substitution: definition

- MRTS of E for K = |slope| of isoquant. = amount of capital that can replace one unit of labor, keeping output constant. $=\mathrm{MP}_{\mathrm{E}} / \mathrm{MP}_{\mathrm{K}}$.

Families of isoquants

- Each production function has a whole family of isoquants.
- More of either K or E increases output.
- Isoquants that are
\qquad and to the
\qquad represent more output.

Shape of isoquants

- Isoquants are mathematically similar to indifference curves.
- Must slope down.
- Cannot cross.
- Are usually curved away from origin.

Isocost line: definition

- Input combinations on same isocost line must have same constant
- Let
w = price of labor $r=$ price of capital
- Equation for isocost line: $\overline{T C}=\mathbf{w E}+\mathbf{r K}$

Slope of isocost lines

- To find slope, solve equation for K :
$K=\frac{\overline{T C}}{r}-\frac{w}{r} E$
- Slope
= coefficient of E
$=(-w / r)$.

Families of isocost lines

- More of either K or E increases total cost.
- Isocost lines that are higher and to the right represent higher
\qquad —.

Cost minimization

- If firm is maximizing profit, then whatever target output level it chooses must be produced at
\qquad cost.
- So profit maximization implies cost minimization.
- But cost minimization does \qquad imply profit maximization.
- Some employers do not maximize profit—for example, some government agencies that sell their output for free-but they may still minimize cost.

Example of isocost line

- Suppose $\overline{T C}=\$ 2000$, $w=\$ 20, r=\$ 10$.
- Then slope $=-w / r$
= \qquad -.
- Intercept on E axis $=\$ 2000 / \$ 20=$
- Intercept on K axis $=\$ 2000 / \$ 10=$ \qquad -.

Example of family of isocost lines

- Again suppose $w=\$ 20, r=\$ 10$.
- Which line is for...
$\overline{T C}=\$ 2000$?
$\overline{T C}=\$ 4000$?
$\overline{T C}=\$ 6000$?

Venn diagram

Where is the cheapest input combination?

- Combinations at intersections between isoquant and isocost lines are clearly
\qquad the cheapest.
- Can reach lower isocost line.

Example of cheapest bundle

- Suppose price of capital (K) is $\$ 10$ per unit and price of labor input (E) is $\$ 20$ per hour.
- This firm will choose $\mathrm{K}^{*}=$ \qquad units,
E* $=$ \qquad hours.
- Total cost of this input combination = \$ \qquad

Full solution for maximizing profit

- Profit maximization requires cost minimization, but it also requires choosing the right output quantity q (or equivalently choosing the right
\qquad _).
- A full solution is to choose E so that $\mathrm{VMP}_{\mathrm{E}}=\mathrm{w}$, and choose K so that $\mathrm{VMP}_{\mathrm{K}}=\mathrm{r}$.
- In other words, $\mathrm{p} \times \mathrm{MP}_{\mathrm{E}}=\mathrm{w}$ and $\mathrm{p} \times \mathrm{MP}_{\mathrm{K}}=\mathrm{r}$.
- These two equations can in principle be solved for \qquad -maximizing levels of E and K .

Cheapest input combination

is at tangency

- Cheapest input combination is at
between target isoquant and lowest attainable isocost line.

Algebra of tangency condition

- At tangency, slope of isocost line equals slope of isoquant:
$-\mathrm{w} / \mathrm{r}=-\mathrm{MRTS}$.
- Multiplying both sides by (-1) gives $\frac{w}{r}=M R T S=\frac{M P_{E}}{M P_{K}}$.

Conclusions

- In the long run, all inputs are variable and can be substituted for each other.
- Any firm that maximizes profit will want to produce its target output level at the lowest possible cost.
- The cost-minimizing employer chooses an input combination at a tangency between the target \qquad and the lowest attainable \qquad line.

AFFIRMATIVE ACTION AND PRODUCTION COSTS

- How do discrimination and affirmative action programs affect cost and profit of firms?

Affirmative action

- Affirmative action (AA) programs are intended to reduce discrimination by requiring firms to hire more women or minorities.
- Targets are firms that have few women or minority workers.
- Isoquants and isocost lines provide a useful framework for thinking about the effects of these programs.

Red and blue workers

- Suppose there are two kinds of workers: red and blue.
- Suppose these workers are \qquad perfect substitutes in production-perhaps because they have different kinds and levels of education, and training, or work experience.
- Ignore other inputs.
- Production function is $\mathrm{q}=$ \qquad .

Isoquants and isocost lines

- Firm's isoquants are ___ because workers not perfect substitutes.
- Isocost lines are
because can hire as many workers as desired, at market wage.

Colorblind firm simply minimizes cost

- Goes to lowest isocost line compatible with target isoquant.
- Chooses input combination at tangency point A .

Discriminating firm
 dislikes red workers

- "Discriminating" firm does not simply minimize cost.
- Owners or managers get disutility from hiring red workers.
- Avoids hiring red workers and moves to non-tangent point B .

Discrimination is unprofitable

- Discriminating firm chooses combination B over combination A even though it costs
- Discrimination raises cost and profit.

But the above analysis assumes
firms are already discriminating

- What if target of AA is
\qquad already
discriminating?
- Then AA program moves firm away from cost-minimizing combination A to combination C .

Conclusions

- Affirmative action programs force firms to hire more women and minorities.
- AA programs can \qquad cost, if firms were initially discriminating against such workers.
- AA programs will \qquad cost, if firms were not initially discriminating.

Effect of AA program on

 discriminating firm- AA program forces firm to hire more red workers (relative to blue workers).
- Moves firm toward point A.
- \qquad cost and profit.

If not already discriminating, then
AA program raises cost

- Movement away from tangency \qquad cost and \qquad profit.
- So AA lowers cost only if firms are already discriminating. Red
workers

DEMAND FOR LABOR IN THE LONG RUN

- How much labor will a firm want to hire in the long run?

Two effects

- Change in price any input has two effects on the firm's choice of inputs in the long run.
- \qquad effect
- \qquad effect.
- This slideshow presents
- first a verbal, intuitive explanation,
- then a graphical explanation.

Changes in input prices

- Input prices change over time. For example,
- Wages of workers could rise if legal minimum wage is increased.
- Price of computers and related equipment will likely fall over time as technology advances.
- Price of energy could rise or fall.
- How will a profit-maximizing firm respond to changes in input prices?

Suppose price of capital decreases

| Change in
 output (q) | Change in
 capital
 input (K) | Change in
 labor input
 (E) |
| :--- | :--- | :--- | :--- |

Scale effect

Substitution No
effect change
Total effect

Suppose wage DECREASES

Change in output (q)	Change in capital input (K)	Change in labor input (E)

Scale effect

Substitution No

effect change
Total effect

Suppose wage INCREASES

	Change in output (q)	Change in capital input (K)	Change in labor input (E)
Scale effect			
Substitution effect	No change		
Total effect			

What happens to isocost lines when

 the wage decreases?- Slope of isocost lines $=-\mathrm{w} / \mathrm{r}$.
- So if w decreases, then each isocost line gets \qquad .

Substitution effect of wage decrease

- If firm kept output constant, it would want to change input proportions to reduce cost.
- It would want to
\qquad K and
- Go to new tangency.

But will firm really keep the same level of output?

- Probably \qquad -.
- Firm can choose whatever level of total output (q) it wants to maximize \qquad
- Will it increase or decrease output?

Increasing output means moving to higher isoquant

- Now suppose relative input prices (w/r) do not change, but firm chooses to increase output.
- Firm will move to a point on a higher isoquant with the same slope.

Scale effect of wage decrease

- If both inputs are "normal inputs," then
K and E will both

What the graph shows:

effect of wage decrease on K

- If w decreases, substitution effect causes firm to decrease \qquad K.
- Scale effect causes firm to increase
- Total effect on K is uncertain depends on which effect is larger.

What the graph shows: effect of wage INCREASE

- If w INCREASES, both substitution effect and scale cause firm to E.
- So total effect is in E .
- But total effect on K is again uncertain.

Firm's LR demand for labor

- We conclude that for an individual firm, wage w and employment E are
\qquad related.
- Individual firm's labor demand curve slopes
\qquad —.

Industry demand curve for labor affected by change in market price

As employment and output fall, p \qquad .

So LR labor demand
 Q.

Industry demand is less sensitive to the wage than individual firms are

- As a result of the shift, E does not decrease as much when firms enjoy the same wage decrease.
- Industry demand for labor is elastic (steeper) than an individual firm's demand.

Conclusions

- In the long run, firms can substitute labor for capital, and vice versa, in response to wage changes.
- When the wage increases, labor demanded by a profit-maximizing firm decreases due to both \qquad and \qquad effects.
- LR industry demand for labor is \qquad elastic than an individual firm's LR demand.

ELASTICITY OF LABOR DEMAND

- What determines the industry elasticity of labor demand?
- What are the "Hicks-Marshall rules"?

Measuring responsiveness

- The most convenient way to measure how strongly the quantity of labor hired responds to the wage is with an elasticity.
- Demand elasticity of E with respect to w is defined as

$$
\varepsilon_{E}^{D}=\frac{\% \text { change } E}{\% \text { change } w},
$$

measured along the industry labor
\qquad curve.

What does the magnitude of $\varepsilon_{E}{ }^{D}$ depend on? Intuitively...

- Shape of isoquants: how easy it is to substitute labor E for capital K.
- Demand curve for the output: how fast the output price p falls as output quantity q increases.
- Share of labor in total cost: whether labor cost is important or unimportant.
- Time horizon: short-run versus long run.

Elasticity of substitution

- Elasticity of substitution

$$
=\sigma=\frac{\% \text { change in }(K / E)}{\% \text { change in }(\omega / r)} .
$$

- Must be \qquad because an increase in w / r leads to more capital K and less labor E.
- Is small if substitution effect is small and isoquant has a \qquad curve.
- Is large if substitution effect is large and isoquant has a \qquad curve.

Shape of isoquants determines strength of substitution effect
subst. effect

Exact formula for industry elasticity of labor demand

Hicks (1935) derived a formula for the industry demand for labor ($\varepsilon_{\mathrm{E}}^{\mathrm{D}}$) that depends on

- elasticity of substitution (σ)
- elasticity of demand for output $\left(\varepsilon_{q}{ }^{\text {D }}\right)$
- share of labor cost in firm's total cost $\left(S_{E}\right)$
- elasticity of supply of capital $\left(\varepsilon_{\mathrm{k}}{ }^{5}\right)$
(John R. Hicks, The Theory of Wages, 1935, pp. 242-244.)

Exact formula for industry elasticity of labor demand (cont'd)

Hicks's formula:

$$
\varepsilon_{E}^{D}=\frac{\sigma\left(\varepsilon_{q}^{D}-\varepsilon_{K}^{S}\right)+S_{E} \varepsilon_{K}^{S}\left(\varepsilon_{q}^{D}+\sigma\right)}{-\varepsilon_{q}^{D}+\varepsilon_{K}^{S}+S_{E}\left(\varepsilon_{q}^{D}+\sigma\right)}
$$

where
$\sigma=$ share of labor in total cost,
$\varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}=$ elasticity of demand for product,
$\varepsilon_{\mathrm{K}}{ }^{\mathrm{S}}=$ elasticity of supply of capital,
$\mathrm{S}_{\mathrm{E}}=$ share of labor cost in total cost.
(John R. Hicks, The Theory of Wages, 1935, pp. 242-244.)

Using Hicks's formula: SR versus LR industry demand for labor (cont'd)

- It can be proved from Hicks's formulas that the $\operatorname{LR} \varepsilon_{\mathrm{E}}^{\mathrm{D}}>\mathrm{SR} \varepsilon_{\mathrm{E}}{ }^{\mathrm{D}}$, in absolute value.
- So industry demand must be elastic (\qquad _) in the long run than in the short run.

Using Hicks's formula: SR versus LR industry demand for labor

- In the \qquad run, the amount of capital K is fixed. This implies that $\varepsilon_{\mathrm{K}}{ }^{5}=0$, and Hicks's formula simplifies to

$$
\varepsilon_{E}^{D}=\frac{\sigma \varepsilon_{q}^{D}}{-\varepsilon_{q}^{D}+S_{E}\left(\varepsilon_{q}^{D}+\sigma\right)}
$$

- In the \qquad run, capital K is available at a constant price r . This implies that $\varepsilon_{\mathrm{K}}{ }^{\mathrm{S}} \rightarrow \infty$, and Hicks's formula simplifies to

$$
\varepsilon_{\mathrm{E}}^{\mathrm{D}}=-\sigma+\mathrm{S}_{\mathrm{E}}\left(\varepsilon_{\mathrm{q}}^{\mathrm{D}}+\sigma\right) .
$$

Using Hicks's formula: typical value of

 LR elasticity of demand for labor- Focus on LR elasticity: $\varepsilon_{\mathrm{E}}^{\mathrm{D}}=-\sigma+\mathrm{S}_{\mathrm{E}}\left(\varepsilon_{\mathrm{q}}^{\mathrm{D}}+\sigma\right)$.
- For the US economy as a whole, $\sigma \approx 1$, $\mathrm{S}_{\mathrm{E}} \approx 0.7$, and $\varepsilon_{\mathrm{q}}{ }^{\mathrm{D}} \approx-1$.
- Therefore $\varepsilon_{\mathrm{E}}{ }^{\mathrm{D}}$
$=-\sigma+S_{E}\left(\varepsilon_{q}{ }^{D}+\sigma\right)$
$=-1+0.7(-1+1)$
$=$ \qquad .

Using Hicks's formula:
 substitution and scale elasticities

- LR elasticity: $\varepsilon_{E}{ }^{\mathrm{D}}=-\sigma+\mathrm{S}_{\mathrm{E}}\left(\varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}+\sigma\right)$.
- Substitution effect assumes output level is
-mim . This implies $\varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}=0$ and Hicks's
formula simplifies to
subst.-effect elasticity $=-\sigma+S_{E} \sigma$.
- Scale effect assumes output may change but input proportions are \qquad . This implies $\sigma=0$ and Hicks's formula simplifies to scale-effect elasticity $=\mathrm{S}_{\mathrm{E}} \varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}$.

Using Hicks's formula: the "Hicks-Marshall rules"

- LR elasticity: $\varepsilon_{\mathrm{E}}^{\mathrm{D}}=-\sigma+\mathrm{S}_{\mathrm{E}}\left(\varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}+\sigma\right)$.
- Implies that industry elasticity of labor demand $\varepsilon_{\mathrm{E}}{ }^{\mathrm{D}}$ is larger in absolute value,

1) the \qquad the elasticity of demand for the output ($\varepsilon_{q}{ }^{\mathrm{D}}$).
2) the \qquad the elasticity of substitution (σ).
3) the \qquad the share of labor in total costs $\left(\mathrm{S}_{\mathrm{E}}\right)$, provided $\left(\varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}+\sigma\right)<0$.

Alfred Marshall, Principles of Economics (1982, p.319).

Hicks-Marshall rule (1) and union strategy

- Would a union rather face high or low elasticity of demand for the industry's output ($\varepsilon_{q}{ }^{\text {D }}$)?
- \qquad elasticity!
- So unions will try to exclude close substitute products such as imports.

Using Hicks's formula: substitution and scale elasticities (cont'd)

- It is easy to show that
$-\sigma+S_{E} \sigma$
$+\mathrm{S}_{\mathrm{E}} \varepsilon_{\mathrm{q}}{ }^{\mathrm{D}}$
$=-\sigma+S_{E}\left(\varepsilon_{q}{ }^{\mathrm{D}}+\sigma\right)$.
- Again, total effect $=$ sum of substitution effect and scale effect.

Using Hicks-Marshall rules to understand union strategy

- Labor unions like to increase wages.
- But unions worry about decreasing employment.
- Unions therefore prefer that labor demand be \qquad elastic.

Hicks-Marshall rule (2)

 and union strategy- Would a union rather face high or low elasticity of substitution in production (σ)?
- \qquad elasticity of substitution!
- So unions will try to limit use of other inputs.

Hicks-Marshall rule (3) and union strategy

- Would a union rather that labor's share of total costs $\left(\mathrm{S}_{\mathrm{E}}\right)$ be large or small?
- \qquad share! (provided $\left.\left(\varepsilon_{q}{ }^{\mathrm{D}}+\sigma\right)<0\right)$.
- So unions will be most aggressive in raising wages when they are a small share of total costs.

Conclusions

- Long-run demand for labor is \qquad elastic than short-run demand.
- The Hicks-Marshall rules show that LR demand for labor is more elastic

1) the \qquad the elasticity of demand for output.
2) the \qquad the elasticity of substitution.
3) the \qquad the share of labor in total costs.

INPUT DEMAND WITH MORE THAN TWO INPUTS

- What are "substitutes" and "complements" in production?
- How are demands for skilled and unskilled labor related to the price of capital?

Extending the production-function model

- We assumed that production depended on just two inputs: $q=f(K, E)$.
- However, we can extend this model to more than two inputs.
- For example, we can divide workers into skilled and unskilled categories: $q=f\left(K, E_{S}, E_{U}\right)$.

Key results still hold

- If we continue to assume that firms minimize cost and maximize profit, key results still hold:
- In SR, firms choose employment levels that equate wages with VMP:
$\mathrm{w}_{\mathrm{S}}=\mathrm{MP}_{\mathrm{S}} \times \mathrm{p}$ and $\mathrm{w}_{\mathrm{U}}=\mathrm{MP}_{\mathrm{U}} \times \mathrm{p}$.
- All SR and LR input demand curves slope
\qquad _.
- LR demand is \qquad elastic than shortrun demand.

Unskilled workers and machines

- There is some evidence that capital and unskilled workers are
production.
- As price of capital (machines) decreases, demand for unskilled workers \qquad -.

Unskilled workers and machines
There is some evidence that capital and unskilled workers are in
production. As price of capital (machines) decreases, demand for unskilled workers

Cross-elasticities

- Cross elasticity of input demand

$$
=\frac{\% \text { change in input } x}{\% \text { change in input price } y} .
$$

- If positive, then inputs are called
\qquad in production.
- If negative, then inputs are called
\qquad in production.

Skilled workers and machines

- There is some evidence w_{s} that capital and skilled workers are

Implications of capital-skill complementarity

- Falling cost of capital
-

 unskilled workers.

- ___ skilled workers
- increases income inequality.
- Thus tax credits for investment spending may
- \qquad economic growth
- \qquad income inequality.
- __ income inequality.

Conclusions

- With more that two inputs, pairs of inputs can be substitutes or complements in production.
- There is some evidence that capital and unskilled labor are \qquad but capital and skilled labor are
\qquad _.

EFFECTS OF MINIMUM WAGES

- How does a legal minimum wage affect the labor market?

Fair Labor Standards Act of 1938

- Introduced a federal minimum wage of $\$ 0.25$ per hour.
- Average manufacturing wage was about $\$ 0.45$ per hour in 1938.
- Act also required time-and-a-half pay over 40 hours per week and restricted child labor.

Federal minimum wage as percent of average manufacturing wage

SOURCE: www.bls.gov, data series CEU3000000008

Minimum wage since 1938

- Minimum wage is not indexed to inflation, but periodically raised by Congress.
- Last raised to \$7.25 in 2009.
- Coverage steadily \qquad by Congress.
- Many states have \qquad minimum wages.

Minimum wage in a competitive labor market

- A binding minimum wage w_{M} pushes the wage above the competitive wage w^{*}.
- This creates excess
labor market. in the

Result of excess supply

- Excess supply contributes to unemployment: workers who want to work at wage w_{M} but cannot find jobs.
- Employment decreases.
- Labor force increases.

Reasons for excess supply

1. Labor supply slopes up: \qquad workers
want to work at the higher wage.
2. Labor demand slopes down: employers want to hire \qquad workers at the higher wage.

How much unemployment?

- Amount of unemployment depends on level of minimum wage w_{M}.
- The higher the minimum wage, the greater the unemployment.

Who wins and who loses from a minimum wage?

- Employers all \qquad because their costs are higher than they would otherwise.
- Workers who still have jobs \qquad because they receive a higher wage than they would otherwise.
- However, some workers lose their jobs (or work fewer hours than they would like). They
\qquad -

Who earns the minimum wage?

Minimum-wage workers are more likely than other workers to be

- young.
- without a high school diploma.
- working part-time.
- working in service occupations like food preparation and serving.

Bureau of Labor Statistics, Characteristics of Minimum Wage Workers: 2010, February 25, 2011.

Who is covered by the Fair Labor Standards Act?

- Initially, only about 43% of nonsupervisory workers were covered.
- Today, \qquad workers are covered by the federal minimum wage, with only about 10 million uncovered.
- Uncovered include \qquad workers and self-employed persons.
- However, in the past (and even today in other countries) many workers were not covered.

Compliance

- In 2010, 2.5% of wage and salary workers were paid the minimum wage.
- Another 3.5\% were paid \qquad than minimum wage.
- Some of these workers were not covered by the minimum wage law, but some surely reflect
\qquad with law.
- Penalties on employers for noncompliance are weak.
- Noncompliance implies little effect on employment.

Bureau of Labor Statistics, Characteristics of Minimum Wage Workers: 2010, February 25, 2011.

Covered and uncovered sectors

- How does minimum wage affect wages of workers in uncovered sector?
- One possibility is that unemployed workers in covered sector "spill over" into uncovered sector to look for jobs.
- Supply in uncovered sector shifts \qquad _,
\qquad wage there.

Waiting for a high-paying job

- Another possibility is that unemployed workers in covered sector "wait" for a job there, joined by some workers from uncovered sector.
- Supply in covered sector shifts \qquad ,
\qquad unemployment further there.
- Supply in uncovered sector shifts \qquad —,
\qquad wage there.

John R. Harris and Michael P. Todaro, "Migration, Unemployment \& Development: A Two-Sector Analysis," American Economic Review, March 1970, v. 60, no. 1, pp. 126-42.

Evidence of effects of minimum wages

- Large number of studies estimate effects of minimum wages on employment.
- Usually focus on groups most affected, especially \qquad , often using data from Current Population Survey.
- Estimates are generally \qquad but vary depending on the time period.

Equilibrium in
 "wait unemployment" model

- In long run equilibrium, expected wage in covered sector equals actual wage in uncovered sector:

$$
\pi \mathrm{w}_{\mathrm{M}}=\mathrm{w}_{\mathrm{u}}
$$

where $\pi=$ probability of finding a job in covered sector.

- If there is substantial job churn in covered sector, then $\pi=$ in that sector.
- However, if workers in covered sector keep their jobs a long time, π might be much less.

PA \& NJ fast food study: Difference-in-differences estimates of effect of minimum wage increase				
	Avg employment (FTE)			
Group	Before increase	After increase	Diff.	Diff.-indiff.
Treatment groupNew Jersey fastfood restaurants	20.4	21.0		
Control groupPennsylvania fastfood restaurants	23.3	21.2		

PA \& NJ fast food study: criticisms

- Data errors—administrative data give different estimates than survey data used by study.
- Study did not consider openings and closings of restaurants.
- Minimum wage might take \qquad to have an effect on employment.
- Rise in minimum wage might \qquad big fast-food chains' market share at expense of smaller restaurants.

Effect of minimum wage on earnings

- Demand is inelastic, so wage rises \qquad than employment declines.
- Example: If elasticity = -0.2 and wage increases by 10\%, then employment decreases by $0.2 \times 10 \%=$ \qquad \% and earnings increase by $10 \%-2 \%=$ \qquad \%.
- So an increase in the minimum wage should increase total earnings of affected workers.

Effect of minimum wage on poverty

- But are affected workers poor?
- Many are teenagers from households that are not poor.
- So benefits of minimum wage are \qquad well-targeted on the poor.

"Living wage" ordinances

- Some cities have "living wage" ordinances that cover municipal employees and employees of businesses that deal with the city.
- Usually several dollars \qquad than the federal minimum wage.
- Do not affect many workers, but apparently
\qquad employment of low-wage
workers slightly.

Conclusions

- The US has had a federal minimum wage since 1938. It affects mostly \qquad workers with little education.
- The supply-and-demand model predicts that a minimum wage \qquad employment.
- Most studies show that minimum wage employment of young workers, with a demand elasticity of -0.1 to -0.3.
- However, some recent case studies find zero or even positive effects on employment.

DEMAND FOR WORKERS VERSUS DEMAND FOR HOURS

- Why would an employer care how many hours each worker works?

Constant returns in production

 for each worker- Many jobs are easy for one worker to hand off to another worker. Examples:

Implications

- If there are constant returns, total hours determine output.
- The employer does \qquad care how long each worker works.
- If there are increasing returns, then if same total hours are worked by fewer employees, output increases.
- The employer prefers to have each worker work hours, rather than hire $\overline{\text { additional workers. }}$

Workers versus hours

- We have implicitly assumed that employers adjust labor input simply by changing the number of workers.
- However, employers can also change the amount of hours that a worker works.
- Why would an employer care whether it
- hires 1 more worker (@ 40 hours per week)
- or has 40 workers (@ 1 hour per week)?

Increasing returns in production

 for each worker- Some jobs may be difficult for one worker to hand off to another worker. Possible examples:
- Lawyers:
- Doctors:

Rules for overtime pay

- Federal law requires many workers to be paid 50% higher wages after 40 hours per week ("overtime pay").
(A)

Fixed costs of labor

- Some costs may depend on the number of workers but not their hours. Examples:
- Govt-mandated benefits.
- Hiring and training costs.

Conclusions

- Employers might not be indifferent to the hours of work per employee.
- If there are \qquad in production or \qquad of labor, employers will prefer that each worker work longer hours.
- If higher wages must be paid after 40 hours, the employer will be reluctant to allow workers to work more than 40 hours.

ADJUSTMENT OF EMPLOYMENT

- How do employers respond to changes in their business environment?

Adjusting employment

- In the real world, productivity, input prices and output prices do not remain constant.
- Firms must adapt to changes in their business environment.
- They must adjust their levels of output and inputs, including labor input (E).

Patterns of adjustment

- As product demand or production costs change,
- some employers tend to make small
\qquad adjustments to E ,
- others (especially in automobiles) tend to make large \qquad adjustments to E .
- Reasons are related to costs of adjustment.

Variable or fixed?

Are an employer's
adjustment costs...

- variable, increasing with the number of workers affected?
- or fixed, same regardless of number of workers affected?

Adjustment costs

Costs of hiring

- Advertising and interviewing for new positions.
- Training new employees.
- Processing new hires through HR office.

Costs of laying off

- Loss of experience and knowledge.
- Possible severance pay and out-placement.
- Possible legal penalties.
- Processing terminations through HR office.

Variable adjustment costs

- Variable costs vary with the number of workers hired or laid off.
- May rise at an increasing rate.
- May be greater for layoffs than for hires, if there are legal penalties for layoffs.

Implications of variable adjustment costs

- If variable costs rise at an increasing rate, then
- Cheaper for the firm to hire, say, 10 workers this year and 10 workers next year, rather than 20 workers this year.

Fixed adjustment costs

- Fixed costs do not vary with number of workers hired or laid off.
- These are "one-shot" costs.
- It costs as much to hire 1 worker as to hire 10 or 20.
- Similarly for layoffs.

Effect of employment protection legislation on adjustment costs

- Some countries have legislated penalties for laying off workers, such as mandated severance pay.
- This increases adjustment costs for layoffs and therefore \qquad the rate at which firms lay off workers in recessions.
- However, this likely also \qquad hiring during expansions, because firms anticipate higher costs at the next recession.

Implications of variable adjustment costs (cont'd)

- Expanding firms will do so slowly, adding a few workers every year.
- Contracting firms will also do so slowly, laying off a few workers every year.

Implications of fixed adjustment costs

- Expanding firms will do so abruptly, hiring many workers at once to save on cost.
- Contracting firms will also do so abruptly, laying off many workers at once.

Employment protection in U.S.

- U.S. has no laws that discourage laying off workers (except unemployment insurance and advance notification).
- However, courts have increasingly limited the traditional doctrine of "employment at will," making it more difficult to fire workers.
- This seems to have prompted U.S. firms to seek alternatives to regular employees, such as \qquad -.

Simultaneous job creation and destruction

- At any point in time, some firms are expanding and others are contracting.
- Simultaneously,
- New jobs are created.
- Old jobs disappear.

Small business, the "engine of growth"?

- It is often claimed that most new jobs are created by small businesses.
- However, research indicates otherwise.
- In manufacturing, firms employing at least 500 workers account for more than half of new jobs are created and destroyed.
- Also, jobs at large firms are more likely to last.

Conclusions

- As the business environment changes, firms adjust their levels of employment.
- If adjustment costs are variable, rising at an increasing rate, adjustments will be
- If there are big fixed costs of adjustment, then adjustments will be
- Employment protection laws can reduce layoffs during recessions but may also the average level of employment.

PART 2

Equilibrium and Differences in Pay

Big ideas: The competitive model can be used to analyze a variety of scenarios. However, some markets show evidence of employer market power. Systematic differences in pay are largely driven by differences in conditions across jobs and differences in productivity across workers.

EQUILIBRIUM IN A SINGLE LABOR MARKET

- Who gains how much from the operation of a competitive market?
- How does the market automatically maximize total gains from trade?

Competitive equilibrium

- In the competitive model of the labor market, the equilibrium wage occurs where quantity of labor supplied by workers = quantity of labor demanded by employers.

A simplified model

- In this simplified model, there are job vacancies or unemployment.
- Firms hire all the workers they want at the market wage.
- Everyone willing to work at the market wage finds a job.

Gains from trade for employers

- Height of demand curve = VMP of each worker.
- Difference between VMP and w* = employer's surplus for that worker.

Total employer surplus

Shocks

- In reality, labor markets may not quite reach equilibrium before they are hit by a demand or supply shift.
- Then they start moving toward the new equilibrium.

Area between demand and wage = total employer surplus.

Gains from trade for workers

- Height of supply curve = amount required to attract a particular worker into this labor market
= opportunity cost of the worker's time.
- Difference between supply curve and w* = that worker's surplus.

Total worker surplus

- Area between supply and w^{*} is total worker surplus.

Total social surplus

= employer surplus + worker surplus

- Competition determines both equilibrium wage and equilibrium quantity.
- Total surplus = area between demand and supply curves, up to equilibrium quantity.

Competition maximizes

 total social surplus- Competition ensures that efficient number of workers are hired to maximize total surplus.
- Hiring more than E^{*} or less than E* would be inefficient.
- Why?

Hiring more than the competitive quantity would be inefficient

- Consider workers in excess of 60 million.
- The value of their time is \qquad than $\$ 90$.
- But the value of their marginal product in employment is

So employing them would be inefficient.

Hiring less than the competitive

 quantity would be inefficient- Consider workers before 60 million.
- The value of their time is \qquad than \$90.
- But the value of their marginal product in employment is than \$90.
- So NOT employing them would be inefficient.

Conclusions

- Markets create \qquad surplus = difference between VMP of workers and what employers actually pay them.
- Markets also create \qquad surplus = difference between opp. cost of workers' time and what they are actually paid.
- Competition ensures that the efficient number of workers is hired to maximize total surplus.

COMPETITIVE EQUILIBRIUM ACROSS LABOR MARKETS

- How are labor markets linked when workers can move freely?
- How does migration affect wages and economic efficiency?

Multiple labor markets

- For analyzing migration, it is useful to think of multiple labor markets.
- How are multiple labor markets linked?
- Consider two markets (e.g., North and South) each containing workers of similar skills.
- Assume for simplicity that labor supply is perfectly inelastic (\qquad) in each market.

Equilibrium across markets

- Each market is in equilibrium by itself.
- But there is a regional wage \qquad .
- If workers can move, they have an incentive to from South to North to
take advantage of higher wages.

Migration causes wage convergence

- Migration shifts labor supply \qquad in low-wage region, and shifts supply \qquad in high wage region.
- Migration causes wages in two regions to
\qquad _.
- If workers can move completely freely, eventually wages in two regions will be
\qquad _.

Movement of employers

- What if employers can move?
- Employers will move from North to South to take advantage of lower wages.
- Labor demand will shift \qquad in highwage region and shift \qquad in lowwage region.
- Again, wages in two regions \qquad .

Migration increases efficiency

- Even though workers move for selfish reasons, and their purpose is certainly \qquad to
equalize wages, they inadvertently increase economic efficiency.
- Loss of output in low-wage area is \qquad than gain in output in high-wage area.

Effects of movement of firms

Migration increases efficiency: example

- Suppose initially that wage in North = \$20 and wage in South = \$15.
- Then VMP of marginal worker in North = \$20 and VMP of marginal worker in South = \$15.
- Removing one worker from South lowers output by \$ \qquad -
- Adding that same worker to North raises output by $\$$ \qquad -
- Net gain in efficiency = \$ \qquad .

Computing total efficiency gains

- Total efficiency gains from migration = dollar value of

Evidence for wage convergence

- States with the lowest wages 50-100 years ago (mostly in \qquad) have had fastest subsequent wage growth.
- Similar regional convergence in other countries, such as Japan.
- Also international wage convergence across countries with similar \qquad levels.
- NAFTA/USMCA could cause some convergence between U.S. and Mexican wages, due to employer movement.

Conclusions

- If workers can move freely, then wage differentials between labor markets should cause
\qquad -.
- Migration of workers (or employers) causes wages to \qquad _.
- Migration increases \qquad by raising output more in destination region than it reduces output in source region.
- There is clear evidence of wage convergence within the U.S. and internationally.

PAYROLL TAXES AND SUBSIDIES

- How do payroll taxes and subsidies affect labor markets?

Payroll taxes

- Payroll taxes are taxes on workers' wages.
- Sometimes the law says worker must pay. Sometimes the law says employer must pay.
- Usually tax is a certain percent of worker wages, not a fixed amount per hour.
- However, to simplify graphs, consider a payroll tax of $\$ 3$ per hour.

Payroll tax assessed on employers

- Suppose employers are required to pay a payroll tax of $\$ 3$ per hour.
- Then employers will be less willing to hire workers, their because net benefit is $\$ 3$ less.
- Put differently, total labor cost per hour = \qquad
- Labor demand curve shifts down by the amount of the $\operatorname{tax}(\$ 3)$.

Payroll tax on employers: example

- Initial equilibrium wage = \$ \qquad -
- Tax shifts demand curve down by $\$ 3$.
- Worker's new equilibrium wage, excluding tax, is \$
- Labor cost per hour for employers, including tax, is \$ \qquad -.

Effects of payroll tax on employers

- Employment \qquad -.
- Total labor cost per hour paid by employers (including tax) \qquad .
- Net wage received by workers (excluding tax)
\qquad
- Thus both sides bear burden of tax.

Payroll tax on workers

- Suppose workers are required to pay a payroll tax of \$3 per hour.
- Then workers will be less willing to work, because their net benefit is $\$ 3$ less.
- Put differently, the net wage (or "take-home pay") = \qquad -
- Labor supply curve shifts up by the amount of the tax (\$3).

Payroll tax on workers: example

- Initial equilibrium wage = \$ \qquad _.
- Tax shifts supply curve up by $\$ 3$.
- Worker's new equilibrium net wage, excluding tax, is \$ \qquad
- Total wage paid by employers, including tax, is \$ \qquad .

Effects of payroll tax on workers

- In equilibrium, effects are exactly the same, regardless of whether tax is assessed on workers or employers.
- Employment \qquad _.
- Total labor cost per hour paid by employers (including tax) \qquad _.
- Net wage received by workers (excluding tax)
\qquad -.

An easier way to graph a tax

- No need to shift curves.
- Simply find place where demand is higher than supply by amount of tax.
- Demand curve shows total wage paid by employers (incl. tax).
- Supply curve shows net wage received by workers (excl. tax).

Who really bears burden of tax?

- True incidence of tax (who pays how much) does \qquad depend on who is required to send the money to the government.
- Instead, depends on slopes of supply and demand curves.
- Side with \qquad elastic (steeper) curve pays more of the payroll tax.

Side with less elastic curve bears more of the burden of the tax

Employment

What if supply is perfectly inelastic?

- Suppose labor supply is perfectly inelastic (vertical).
- Then bear all of burden of the tax, regardless of how it is assessed.

Who bears burden of U.S. payroll taxes?

- Labor supply of men is quite inelastic.
- So most of burden falls on \qquad —.

Efficiency effects of payroll taxes

- Like all taxes, payroll taxes reduce quantity.
- Workers' take-home pay is now than value of their marginal product.
- Some workers will stop working.

Total surplus without a tax

Without a payroll tax,

- employers enjoy surplus between demand curve and w*.
- Workers enjoy surplus between w* and supply curve.

But the government collects payroll tax revenue

- Tax revenue
= tax rate
\times new employment
(E_{T}).

Loss of employer and worker surplus

With a payroll tax,

- employers lose part of their surplus.
- workers lose part of their surplus.

Efficiency effects of payroll taxes:

example

- Employment decreases to \qquad million.
- Employer surplus decreases by \$ \qquad million.
- Worker surplus decreases by \$ \qquad million.

Efficiency effects of payroll taxes: example (cont'd)

- The government collects \$ \qquad million in payroll tax revenue.
- Deadweight loss = $=100+50-120=$ \$ \qquad million.

Payroll taxes in the U.S.

- Social Security (OASDI) tax rate is currently 6.2%. Medicare (HI) tax rate is 1.450%.
- Paid by both workers and employers, so total tax rate $=2 \times(6.2 \%+1.450 \%)=$ \qquad $\%$.
- Social Security tax paid on all wages (and selfemployed earnings) up to a limit, which is adjusted each year. As of 2020, limit = \$ \qquad .
- Medicare tax has no limit.

Payroll taxes in the U.S. (cont'd)

Other U.S. payroll taxes include...

- Workers compensation, which funds insurance for injuries on the job (paid by \qquad).
- Unemployment insurance (paid by
\qquad _).
- State and federal personal income tax (paid by
\qquad).

Payroll subsidies

- A simple payroll subsidy acts like a negative tax.
- Employment
- Total wage received by workers \qquad
- Net wage paid by employers \qquad .

Efficiency effects of payroll subsidies

- Both sides would enjoy some of the benefit, depending on slopes of curves.
- Worker surplus increases.
- Employer surplus increases.

Efficiency effects of payroll subsidies

- But government's cost of subsidy program is greater than the increase in worker and producer surplus.
- Difference is deadweight loss.

Employment

Payroll subsidies in U.S.

- Payroll subsidies paid to employers have been targeted toward particular groups of workers for a particular time period.
- Usually include cap on total amount gov't pays.
- Subsidy programs (except EITC*) have had little effect on employment because
(1) employers \qquad of program;
(2) employers may be \qquad of hiring targeted workers.
* Earned Income Tax Credit is paid to workers, not employers.

Conclusions

- Payroll taxes \qquad employment and wages, and cause deadweight social loss.
- Tax burden falls on both sides of the market, regardless of how tax is assessed. Side with
\qquad elastic curve bears more of
burden.
- Payroll subsidies \qquad employment and wages, but still cause deadweight loss.

MANDATED BENEFITS

- How do mandated benefits affect labor markets?

Mandated benefits

- A mandated benefit is a benefit for workers that employers are required by law to provide.
- Example: Suppose the government required that all employers give workers free bus passes.
- What are the effects on labor supply and demand?

Effect on labor market of mandated benefit NOT valued by workers

- Suppose workers do not value the benefit.
- No change in labor supply.
- But total labor cost per worker now increases by cost of bus pass.
- So labor demand shifts
\qquad by cost of pass.

Mandated benefit NOT valued by workers is just like payroll tax (cont'd)

- Worker and employer surplus both decline.
- Even if the mandated benefit is worth its cost (because, say, it reduces pollution) it causes
in this market.

Mandated benefit NOT valued by workers is just like payroll tax

- Employment
- Total labor cost per worker paid by employers (including benefit)
- Wage received by workers
\qquad .

Effect on labor market of mandated benefit VALUED by workers

- Suppose workers value the bus pass a little.
- Labor supply shifts
\qquad value of the bus pass.
- Employment decreases but not as much.

[^0]Mandated benefit NOT valued by workers: example

- Suppose gov't mandates that workers be given free health insurance.
- Suppose insurance costs employers $\$ 300$ per worker per month.
- So monthly labor demand shifts down by $\$ 300$.
- Employment decreases to
\qquad million.

Mandated benefit VALUED by workers:

 example- Suppose insurance is worth \$150 to workers.
- Labor supply shifts down by $\$ 150$.
- Employment decreases to \qquad million.

Mandated benefits in U.S.

- Mandated health insurance first proposed by Clinton Administration.
- Later enacted in Affordable Care Act.
- Alternatively, government could have provided health insurance directly, paying for it with a payroll tax.
- If workers value health insurance, mandate should have \qquad effect on employment than payroll tax.

Mandated benefit NOT valued by
 workers: example (cont'd)

- Wage decreases to \$ \qquad _.
- Total labor cost per worker (including insurance) increases to \$ \qquad -.

Mandated benefit VALUED by workers: example (cont'd)

- Wage decreases to \$ \qquad , but entire compensation package (including insurance) is worth \$ \qquad to workers.
- Total labor cost per worker (including insurance) = \$ \qquad -.

Conclusions

- A mandated benefit acts like a tax, tending to ___ employment and wages, and cause deadweight social loss.
- However, it has \qquad adverse effect if workers value the benefit.

IMMIGRATION AND MARKET EQUILIBRIUM

- How does immigration affect labor supply?
- How does immigration affect labor demand?

Simplest model

Simplest short-run model of immigration assumes

- Native workers and immigrants have same skills, are perfect
production.
- No change in labor demand

Implications of simplest model

- In short run immigration shifts labor supply to the right.
- Wage \qquad -
- Total employment

An alternative model

- Suppose native workers and immigrants have different skills, and are production.
- Then immigration might boost demand for native workers.
- Wages and employment of natives might both
\qquad _.

What happens to native workers?

- Some native workers withdraw from the labor force because of lower wages.
- Employment of natives
\qquad
- Immigrants "take" jobs from natives.

Does immigration affect labor demand too?

- Labor demand slopes down in simplest model because capital stock is assumed fixed.
- But if wage falls, then in long run, more capital will be attracted to the country.

Long-run shifts in labor demand

- Increase in stock of capital stock boosts demand for other inputs to production, such as labor.
- In long run, demand shift might offset decrease in wages.

Conclusions from economic theory

- Immigration may lower wages of natives in short run.
- Immigration may have no effect on wages of natives in long run.
- But theory does not say how long till the "long run" arrives.

Labor market	Avg wage before immigration	Avg wage after	Difference
Market X	$\$ 10$	$\$ 12$	

- Could compare wages in some labor market before and after immigration.
- Could attribute any difference in wage to immigration.

Measurement from simple differences

Long-run equilibrium

- Under plausible assumptions (constant returns to scale in aggregate production), enough capital will be attracted to restore wages to previous level.
- Long-run labor demand is horizontal (perfectly elastic).

How to measure effects of immigration?

- Economic theory says immigration may decrease wages in the short run, but does not say how much.
- Can we measure how much from data?

Problems with simple differences

- Assumes that the wage before immigration would have continued in absence of immigration-that is, the first-period wage is the \qquad _.
- But other things could affect the wage even without immigration:

Fixing the simple difference approach

Labor market	$1^{\text {st }}$ period avg wage	$2^{\text {nd }}$ avg wage	Difference	Difference-in- differences
Market X	$\$ 10$	$\$ 12$	$\$ 2$	
Market Y	$\$ 8$	$\$ 11$	$\$ 3$	

- Need a \qquad , some labor market Y affected by these same things, but NOT by immigration.
- Compute effect of immigration as difference-indifferences (DID).

DID using spatial markets

- Many studies have compared cities affected by immigration with cities not affected.
- Usually find \qquad effect of immigration.
- But controls have been criticized. Cities that do not receive immigration from abroad sometimes receive internal migration.

DID using skill markets

- Some studies have compared skill markets (education levels) affected by immigration with skill markets less affected.
- Usually find some \qquad effect of immigration on wages.

Conclusions

- The simplest short-run model predicts that immigration will cause the average wage to
\qquad , total employment to \qquad . and employment of natives to \qquad -
- However, theory predicts wages will be unaffected in the long run, whenever that is.
- Measurement of the effects of immigration requires a control group.
- Some studies find \qquad effect of immigration on wages and some find a \qquad effect.

ECONOMIC BENEFITS FROM IMMIGRATION

- How much does the receiving country gain from immigration?

Surplus before immigration

- Employer surplus = area between demand curve and w^{*}.
- Worker surplus
= area between supply
curve and w*
= w^{*} x E^{*}
= labor earnings.

Effects of immigration

- Immigration shifts the supply curve to the right.
- After immigration, employment increases to "new E*" and wage decreases to "new w*".

Surplus after immigration

- Employer surplus = area between demand curve and new w*.
- Native worker surplus = new w^{*} x E^{*} = native worker earnings.
- Immigrant earnings = new $\mathrm{w}^{*} \mathrm{x}$ (new $\mathrm{E}^{*}-\mathrm{E}^{*}$).

Assumptions

- Short run: demand for labor equals VMP and slopes down.
- Domestic and immigrant labor have perfectly inelastic (vertical) supply curves.
- Native and immigrant workers are perfect substitutes.

Calculating immigration surplus

- Net gain from
immigration =
"immigration surplus"
$=(1 / 2) \times\left(w^{*}-\right.$ new $\left.w^{*}\right)$
$\times\left(\right.$ new $\left.E^{*}-E^{*}\right)$
$=(1 / 2)(\Delta w)(\Delta E)$

Immigration surplus as percent of national income
"immigration surplus" / national income
$=(1 / 2)(\Delta w)(\Delta E) /$ national income
$=\left(\frac{1}{2}\right)\left(\frac{\Delta w}{w}\right)\left(\frac{\Delta E}{E}\right)\left(\frac{w E}{\text { national income }}\right)$
$=\left(\frac{1}{2}\right)$

Estimating immigration surplus as a percent of national income

- Immigration in the U.S. has resulted in
- \% chg w = about 3.5\%
- \% chg E = about 10\%
- Labor's share of national income = about 0.7.
- So "immigration surplus"/national income
= (1/2) (3.5\%) (10\%) (0.7)
= \qquad percent.

Immigration surplus in the long run

- In long run, K is not fixed and VMP does not slope down.
- Wage and rate of return to capital \qquad affected by immigration.
- Immigrants increase GDP, but entire increase is paid to them.
- Immigration surplus =

Conclusions

- In short run, immigration increases employment and decreases the wage in the receiving country.
- But increase in employer surplus is
\qquad than decrease in worker surplus.
- Short run "immigration surplus" = $=(1 / 2)(\Delta w)(\Delta E)$.
- Long run "immigration surplus" = \qquad .

THE COBWEB MODEL OF LABOR MARKETS

- Why do some professional labor markets experience boom-bust cycles?

Booms and busts

- Some labor markets do not seem to converge quickly and directly to equilibrium.
- Markets for engineers and some other highlyskilled fields seem to go through periods of booms and busts.
- In booms, wages are \qquad , jobs are plentiful, and workers are scarce.
- In busts, wages are \qquad , jobs are scarce, and workers seem plentiful.

A model of booms and busts

- A competitive model of supply and demand, with two additional assumptions:
(1) It takes time to educate a new engineer.

Thus, short-run supply is very inelastic.
(2) People decide whether to become engineers based only on pay levels prevailing at the time they enter engineering school-years before they look for a job.

Initial equilibrium and sudden boom

- Initially, market for engineers is in long-run equilibrium.
- Then demand shifts out suddenly-perhaps because of a new space or defense program.

LR supply

Short-run response to boom

- New engineers take time to train.
- In short run, supply is therefore perfectly inelastic.
- Competition for existing engineers causes the wage to shoot up.

Medium-run response to boom

- High wage encourages more people to enter engineering schools, as shown by the LR supply curve.
- Years later, they graduate and enter labor market.

Medium-run response to bust

- Low wage discourages people from entering engineering school, as shown by the LR supply curve.
- Years later, few engineers enter the labor market.

Boom starts again

- Scarcity of engineers causes excess demand.
- In the short run, supply is perfectly inelastic.
- Competition for existing engineers causes the wage to shoot up again.
- Etc.

Long-run equilibrium

- Cycles of boom and bust repeat.
- Converge to new LR equilibrium provided supply is less elastic (steeper) than demand.

Algebraic example

- Suppose LR supply for computer scientists is $E_{t}=-200+100 w_{t-1}$.
- Suppose initial demand is $\mathrm{w}_{\mathrm{t}}=50-0.005 \mathrm{E}_{\mathrm{t}}$.
- Solve jointly for initial LR equilibrium: $\mathrm{w}_{0}=\$$ \qquad -. $\mathrm{E}_{0}=$ \qquad .

Algebraic example: initial boom

- Then suppose demand shifts up to $w_{t}=100-0.005 \mathrm{E}_{\mathrm{t}}$.
- E does not change in short run.
- Substitute E_{0} to find new wage:
$\mathrm{w}_{1}=100-0.005$ (3200)
$=\$$ \qquad .

Algebraic example:

medium-run response to boom

- High wage attracts more people to study computer science.
- Use supply equation to compute number of computer scientists supplied in MR at this high wage:
$E_{2}=-200+100(84)$
$=$ \qquad .

Booms and busts in cobweb model

Algebraic example:

medium-run response to bust

- Low wage discourages people from studying computer science.
- Use supply equation to compute number of computer scientists supplied in MR at this low wage: $E_{3}=-200+100(59)$ = \qquad —.

都

Algebraic example: bust

- This causes a glut of computer scientists.
- Excess supply forces wages down.
- Use demand equation to compute new wage: $\mathrm{w}_{2}=100-0.005$ (8200) $=\$$ \qquad -.

Long-run equilibrium

- To find new LR equilibrium, solve new demand and LR supply jointly, ignoring time subscripts $\left({ }_{t}\right)$.
- New demand: $w=100-0.005 \mathrm{E}$.
- LR supply: $E=-200+100 w$.

Long-run equilibrium (cont'd)

- Substitute: $\mathrm{w}=100-0.005$ $(-200+100 \mathrm{w})$.
- $\mathrm{w}^{*}=\$$ \qquad .
- $\mathrm{E}^{*}=$ \qquad .

A "cobweb model"

- Graph of boom-bust cycle inspired the term "cobweb model."
- Assumption (2) is controversial:
- Why can't people see the cycle?
- Why don't people take a longer view in deciding whether to enter a profession?
- Nevertheless, there is clear evidence of cycles in many professional markets.

Conclusions

- Some professional labor markets seem to experience boom-bust cycles.
- One model of cycles assumes

1) it takes time to train for the profession, and
2) people decide whether to train based only on pay levels prevailing \qquad .

- The resulting "cobweb model" approaches equilibrium slowly, in \qquad cycles.

MONOPSONY IN THE LABOR MARKET

- How does a firm behave if it faces upward-sloping labor supply?

Definition of monopsony

- Monopsony = "single \qquad .$"$
- Contrast with monopoly = "single seller."
- An employer that is a monopsony has the labor market to itself.
- It does \qquad take the wage as given.
- However, we assume that it pays all workers the \qquad wage—not a "discriminating monopsonist."

Market power of monopsonist

- It cannot hire all the labor it wants at a constant market wage.
- It must recognize that if it wants to hire more labor, it must
\qquad the wage.

Employment

Marginal labor cost

- Marginal labor cost = MLC
= increase in labor cost (WE) that results from hiring one more unit of labor $=\Delta$ (labor cost) $/ \Delta \mathrm{E}$.
- If the wage is taken as given at, say $\$ 5$, then MLC = \$5.
- However, if the wage increases the more workers are hired, then MLC > \$5.

Marginal labor cost for a firm that takes wage as given			
w	E	Labor cost	Δ (labor cost)
\$5	10		$/ \Delta E$
\$5	20		
\$5	30		
\$5	40		
\$5	50		
\$5	60		
\$5	70		

Marginal labor cost for a monopsonist			
			$\begin{gathered} \text { MLC }= \\ \Delta(\text { labor cost }) \\ / \Delta E \end{gathered}$
w	E	Labor cost	
\$5	10		
\$6	20		
\$7	30		
\$8	40		
\$9	50		
\$10	60		
\$11	70		

Labor cost and marginal labor cost
(MLC)

- Labor cost $=\mathrm{w} \times \mathrm{E}$ = area of rectangle .
- Marginal labor cost = change in this area as E increases by one.
- So why is MLC > wage?

A formula for marginal labor cost

1) wage paid next worker (\# $\mathrm{E}+1$) $=\mathrm{W}$
2) increase in wages paid to all E existing workers $=\mathrm{E} \times \Delta \mathrm{W}$ $=E \times(\Delta W / \Delta E)$ since here $\Delta \mathrm{E}=1$.
So MLC =

MLC has same intercept and	
twice the slope as labor supply curve*	
Labor supply	Marginal labor cost
$W=5+(E / 100)$	MLC $=$
$W=2+(E / 2000)$	MLC $=$
$W=1+0.03 E$	MLC $=$

Profit maximization

- Firm hires labor to the point where the contribution of last worker to revenue = contribution to cost.
- In other words, choose E so that $\mathrm{VMP}=\mathrm{MLC}$.

Monopsony wage < VMP

- Firm does NOT need to pay w = VMP.
- Instead it pays the lowest wage it can pay, while still hiring E_{M} workers.
- Wage is on \qquad curve, not VMP curve, and not MLC curve.

Measuring the gap between wage and VMP

- Recall that firm chooses E so that VMP = MLC $=w+w\left(\varepsilon_{E}{ }^{S}\right)^{-1}$.
- Subtract w from both sides and divide by w to get $\frac{\text { VMP }}{w}=$
- So \% gap between wage and VMP
$=$ \qquad of elasticity of labor supply.

What does the gap mean?

- $\frac{\mathrm{VMP}}{w}=\left(\varepsilon_{E}^{s}\right)^{-\mathbf{1}}$ was called the "rate of \qquad " by famous economist A.C. Pigou.*
- It measures how bad monopsony is.
- Similar to "Lerner index" of market power in product markets.

Example

Assumptions

- VMP (labor demand) is $W=14$ - (E/100).
- Supply is $W=2+(E / 100)$.
Then competitive
wage $W_{c}=$ \$ \qquad and efficient employment $\mathrm{E}_{\mathrm{C}}=$ \qquad -

Example: monopsony

- Given supply is $W=2+(E / 100)$, MLC $=$ \qquad
- Set VMP = $14-(\mathrm{E} / 100)$ = MLC and solve to find $\mathrm{E}=$ \qquad _.
- Use supply equation to find W = \$ \qquad _.

Example: Pigou's rate of "exploitation"

- $\frac{\text { VMP }-w}{w}=$

\qquad
.

Examples of simple monopsony

- Isolated "company towns"?
- Mining camps
- Logging camps
- Paper manufacturing towns
- But employers may not have had much market power. Workers in such camps are often very mobile.

Monopsony throughout the labor market

- Recently, some economists have suggested that employers have monopsony power whenever the job search process is slow.
- Employers will \qquad lose all their workers immediately if they pay less than other employers.
- Thus every employer confronts slightly
\qquad -sloping supply of labor, at least in the short run.

Monopsony through collusion

- Another possibility is that groups of employers cooperate in hiring workers and setting wages.
- May succeed in pushing wages below VMP, though perhaps not all the way down to monopsony wage.

Conclusions

- A labor monopsonist is an employer who confronts supply of labor.
- A monopsonist hires until its $\mathrm{VMP}=$ its marginal labor cost. But both of these are greater than the monopsonist's wage.
- So a monopsonist pays a \qquad wage and hires \qquad workers than an employer who takes wage as given.

WELFARE ANALYSIS OF MONOPSONY

- Why is monopsony economically inefficient?

Efficient employment

- Efficient level of employment is where value of marginal product
= opportunity cost of marginal worker's time.
- That is, where VMP curve intersects labor
\qquad curve.

Competitive labor markets

- Competitive employers are "wage \qquad ."
- They hire workers until $\mathrm{w}=\mathrm{VMP}$.
- So competitive labor markets are efficient and maximize \qquad surplus.

Monopsony creates economic inefficiency

- Because too little labor is hired, there is deadweight loss from monopsony.
- Some workers whose VMP > opportunity cost of their time are not hired.

Monopsony employment < competitive employment

- But monopsonists do not take the wage as given.
- Monopsony
employment below efficient level.
- There is less social surplus.

Conclusions

- Labor monopsony is inefficient because too
\qquad workers are hired.
- Unlike in a competitive market, some workers whose VMP at work is greater than opportunity cost of their time are not hired.
- Monopsony therefore \qquad the total surplus in a labor market.

EFFECT OF MINIMUM WAGE ON MONOPSONY

- How does a monopsony employer respond to a minimum wage?

Minimum wages and monopsony

- Minimum wage laws affect monopsonies differently from competitive labor markets.
- This is because monopsony outcome is on labor curve, not labor demand curve.

Minimum wage changes marginal labor cost

- At low end of supply curve, min. wage is binding.
- At low end of supply curve, employer need
\qquad raise wage hire more workers.
- At low end of supply curve, $\mathrm{MLC}=\mathrm{w}_{\text {min }}$.

Monopsony: review

- Single buyer in a labor market.
- Faces upward-sloping supply of labor.
- Hires workers until VMP = MLC.
- Hires fewer workers and pays lower wage than employer who takes wage as given.

Minimum wage puts kink in monopsonist's labor supply curve

- Employer may not pay a wage less than the legal minimum.
- Thus monopsonist's labor supply curve is horizontal at $\mathrm{w}_{\text {min }}$.

Effect of very low minimum wage

- Suppose min. wage is lower than what monopsonist would otherwise pay:
$\mathrm{w}_{\text {min }}<\mathrm{w}_{\mathrm{M}}$.
- Min. wage is \qquad binding.
- Then the minimum wage will have effect.

Effect of modest minimum wage on employment by a monopsonist

- Suppose min. wage is slightly higher than what monopsonist would otherwise pay: $\mathrm{w}_{\text {min }}>\mathrm{w}_{\mathrm{M}}$.
- Then VMP intersects MLC at jump point, to
\qquad of original employment level.

Modest minimum wage DECREASES inefficiency in a monopsony

- Because more labor is hired, there is \qquad deadweight loss.
- More workers whose VMP > value of their time are hired.

Very high minimum wage

- Further increases in min. wage cause employment to
\qquad _.

Example: monopsony with modest minimum wage

- Suppose minimum wage is set at $\$ 7$.
- Now monopsonist's MLC "jumps" at 500.
- Min. wage increases employment from 400 to \qquad and increases wage from $\$ 6$ to $\$$ \qquad -.

Example: monopsony with high minimum wage

- Suppose minimum wage is set at $\$ 11$.
- Now $\$ 11>\mathrm{W}_{\mathrm{C}}=\$ 8$, so binding.
- Employment falls to
\qquad —.

Conclusions

- A modest legal minimum wage causes a monopsonist to \qquad pay and employment.
- This \qquad economic efficiency.
- But a minimum wage higher than the efficient wage \qquad employment even in a monopsony.

DETECTING MONOPSONY

- How can we tell if employers have monopsony power?

Competitive labor market or monopsony?

- Difficult to tell whether a labor market is a monopsony from just looking at wage data.
- Low wages can occur in both competitive and monopsony labor markets.
- Researchers have used a variety of statistical methods to detect monopsony.

Method 1

- Try to measure labor supply curve to an
- $\operatorname{Ln}(W)=\beta_{1}+\beta_{2} \ln (E)$
- Here, $\beta_{2}=\left(\varepsilon_{E}{ }^{S}\right)^{\mathbf{- 1}}$,

Pigou's "rate of exploitation," which $=0$ if firm is a competitor.

Method 3

- Try to measure the effect of an increase in the minimum wage on employment.
- $\operatorname{Ln}(E)=\beta_{1}+\beta_{2} \ln (\min W)$
- A wage increase should
\qquad employment in a competitive market but \qquad employment in a
 monopsony.

Method 2

- Try to measure gap between VMP and wage.
- Gap = 0 if a competitor, >0 if a \qquad
- Challenge is how to measure VMP of an individual worker.

Method 4

- Try to measure the effect of employer "concentration" in local labor markets on local wages.
- A labor market is "concentrated" if it is dominated by a few large employers.
- $\operatorname{Ln}(W)=\beta_{1}+\beta_{2} C$
- Here, C is some measure of employer concentration, such as \qquad
\qquad

Conclusions

- Researchers have used a variety of statistical approaches to detecting monopsony.
- They don't simply look for low wages.
- Instead they focus on the differences between how competitive and monopsony labor markets behave, according to theory.

EMPLOYER COLLUSION

- Do employers ever cooperate to exert monopsony power?

Adam Smith on employer collusion

"We rarely hear, it has been said, of the combinations of masters [employers]; though frequently of those of workmen. But whoever imagines, upon this account, that masters rarely combine, is as ignorant of the world as of the subject. Masters are always and everywhere in a sort of tacit, but constant and uniform combination, not to raise the wage of labour above their actual rate. To violate this combination is everywhere a most unpopular action, and a sort of reproach to a master among his neighbours and equals."

Adam Smith, An Inquiry in the Nature and Causes of the Wealth of Nations, Volume 1, Strahan, 1776, pp. 81-82.

Modern examples of employer collusion

1) Reserve clauses in professional sports.
2) "No-poaching" agreements between employers.
3) "Noncompete" clauses in employment contracts.

1) Reserve clauses in professional sports contracts

- Beginning in 1879, major leagues required each baseball player to negotiate with only
\qquad team.
- Clause included in player contracts.*
- Eliminated in 1970s through collective bargaining with Major League Baseball Players Association. Pay rose rapidly.
- Similar rules in football, basketball, hockey, and soccer.
* U.S. Supreme Court held in 1922 that baseball not subject to antitrust laws. Federal Baseball Club v. National League (259 U.S. 200)

2) "No-poaching" agreements

- Employers agree not to compete for workers.
- Example: from 2005-09 Apple, Google, Adobe, Intel, Intuit, Pixar, and Lucasfilm agreed orally not to poach each others' technical workers.
- Steve Jobs said, "If you hire a single one of these people that means war!" according to Sergey Brin.*
* http://money.cnn.com/interactive/technology/apple-google-adobe-intel-case/

Antitrust complaint filed by Dept of Justice

- In 2010, U.S. Department of Justice filed a complaint, alleging the companies had agreed not to "cold call" each other's employees.
- In settlement with DOJ, companies abandoned those agreements.

Lawsuit by Silicon Valley employees

- Firms were sued 2011 by employees under Section 1 of Sherman Antitrust Act.
- Expert witness economist Edward Leamer estimated damages at $\$ 3.05$ \qquad in lost wages.
- Eventually settled for $\$ 415$ million. 64,000 workers received about \$5,800 each.
- Since then, "poaching" has become common.
http://www.telegraph.co.uk/technology/news/11843237/Apple-Google-and-others-to-pay-415m-to-settle-Silicon-Valley-no-poaching-lawsuit.html

"No poaching" clauses in franchise agreements

- Recent study found that 58\% of franchise contracts with major chains include "no poaching" clauses.
- Franchisee agrees not to hire workers who have worked recently for another franchisee in the same chain.
- Examples include McDonald's, Burger King, Jiffy Lube, and H\&R Block.
Krueger, A. B., \& Ashenfelter, O. (2017). Theory and evidence on employer
collusion in the franchise sector. Working paper. Industrial Relations Section. Princeton University. Princeton, NJ. https://ideas.repec.org/p/pri/indrel/614.html

3) "Non-compete" agreements

- Employees required to promise not to work for competing employers after leaving.
- Example from Amazon:
" . . . for 18 months after the Separation Date, Employee will not . . . engage in or support the development, manufacture, marketing, or sale of any product or service that competes or is intended to compete with any product or service sold, offered, or otherwise provided by Amazon ..."*
*Starr, Evan P.; Norman Bishara and J. J. Prescott. 2015. "Noncompetes in the U.S Labor Force," presented at Western Economic Association Annual Meeting, San Diego, July 2017. This example is required of temporary packers and permanent engineers.

Legal status of "non-competes"

- Apparently legal under antitrust law.
- Enforceability varies according to state law.
- May have some legitimate use-to protect trade secrets.
- But many workers signing "non-competes" are low-level workers who do not have access to trade secrets.
U.S. Department of the Treasury, "Non-Compete Contracts: Economic Effects and Policy Implications," March 2016. https://www.treasury.gov/resource-center/ economic-policy/Documents/UST\%20Non-competes\%20Report.pdf

Conclusions

- Employers do sometimes cooperate.
- In professional sports, a reserve clause formerly tied players to individual teams. After it disappeared, teams had to compete for players and pay rose.
- No-poaching agreements between employers are sometimes used to suppress competition, but they are \qquad under antitrust law.
- Non-compete agreements between employers and employees are legal but not always enforceable.

COMPENSATING WAGE DIFFERENTIALS

- Why are workers paid wage differentials for taking risky jobs?
- What determines the equilibrium wage differential?

Variation in job characteristics

- The wage is not the only job characteristic that workers care about.
- Workers also care about \qquad
\qquad
- Different workers may like or dislike these characteristics.
- But most workers dislike the risk of injury or death.

Wage and risk of death on the job

Worker preferences

- Assume workers like wages but dislike risk of injury on the job.
- Utility = f(w, risk).
- Then workers' indifference curves must slope \qquad
- Jobs on the same indifference curve are equally desirable.

Reservation price of job risk

- Thus for this person, the reservation price of job risk = \$25-\$10 = \$ \qquad —.
- She/he requires at least a compensating wage differential of \$ to take the high-risk job.

Reservation price of job risk

- Different workers have different preferences, and higher or lower reservation prices for high-risk jobs.
- For example, this worker's reservation price is only \$ \qquad

Firms' costs of reducing risk

- If it cost firms nothing to reduce risk, they would do so immediately (so they could avoid paying the wage differential).
- But reducing many risks is costly.
- Out-of-pocket costs: purchasing or renting helmets, protective gloves, screens, barriers, etc.
- Lower productivity: doing things the slow and careful way, inspecting machinery frequently, etc.

Supply of workers to high-risk jobs

- The higher the wage differential, the __ workers are willing to take highrisk jobs.
- Supply of workers to high-risk jobs thus slopes \qquad .

Pay to reduce risk or pay the wage differential?

- Suppose a firm can convert a job from highrisk to low-risk by renting safety equipment at a cost of $\$ 10$.
- If wage differential is \qquad than $\$ 10$, the firm will rent the equipment.
- If wage differential is \qquad than $\$ 10$, the firm will pay the wage differential instead of renting the equipment.

Pay to reduce risk or pay the wage

 differential? (cont’d)- This firm will hire a worker for a high-risk job only if wage differential is less than \$ \qquad _.
- Other firms might have higher or lower costs of converting jobs from high-risk to low-risk.
- For example, if another firm can reduce risk only at a cost of $\$ 5$, it would be willing to pay a wage differential only up to \$ \qquad -.

Demand for workers in high risk jobs

- The lower the wage differential, the workers that firms want to hire for high-risk jobs.
- Demand for workers in high-risk jobs thus slopes \qquad .

Equilibrium

- At equilibrium wage differential, number of workers willing to take high-risk jobs = number of high-risk jobs offered by firms.

What does the equilibrium wage differential NOT equal?

- It does \qquad equal the average reservation price of all workers in the economy.
- It also does \qquad equal the average reservation price of all workers in high-risk jobs.

Adam Smith on compensating differentials

"The whole of the advantages and disadvantages of the different employments of labour and stock must, in the same neighbourhood, be either perfectly equal or

What does the equilibrium wage differential equal?

- It equals reservation price of high-risk worker (last to be hired).
- It equals the amount required to attract the marginal (last) worker into a high-risk job.

Could the equilibrium wage differential be negative?

- If many workers liked risk, supply curve would be lower and equilibrium wage differential could be
- Seems unlikely for risk of injury.
- Perhaps possible for other job characteristics such as frequent travel.

Conclusions

- Workers dislike job risk, so they must be paid compensating wage \qquad to take high-risk jobs.
- Risk reduction is costly, so firms are willing to pay wage differentials to attract workers to high-risk jobs.
- The equilibrium wage differential equals the of the marginal worker for taking a risky job.

HEDONIC EQUILIBRIUM

- How does the market create a continuous tradeoff between pay and job risk?

Worker preferences and risk of injury

- Assume workers like wages but dislike risk of injury on the job.
- Indifference curves, connecting equally desirable combinations, must therefore slope up.
- Different workers have slightly different preferences, however.

Workers in equilibrium

- Hedonic equilibrium is a market-determined wage-risk tradeoff curve.
- Each worker chooses her/his most preferred location on hedonic wage function (tangency).

Firms in equilibrium

- Each firm chooses its most profitable point on hedonic wage function (tangency).

Differences in costs
of risk reduction

- Firms in different industries have different isoprofit curves.
- Firms with different isoprofit curves locate themselves on different parts of hedonic wage function.

Hedonic equilibrium

In hedonic equilibrium,

- No worker or firm wants to change position on the hedonic wage function.
- Every firm has the number of workers it wants.

Shape of hedonic wage function

- Hedonic wage function for risk of injury or death must slope \qquad because all curves to which it is tangent slope up.
- Might be curved.

Shifts in "hedonic wage function"

- Like a simple equilibrium price, it depends on both demand and supply.
- For example, if more workers enter market, the whole function moves down and to the right.

Hedonic wage function for attractive job amenities

- Assume all workers like wages and more flexible hours.
- Indifference curves must slope down.
- Assume isoprofit curves slope down.
- Then hedonic wage function curve would slope \qquad , too.

Hedonic wage function when workers' preferences vary

- Suppose some workers like a particular amenity and others dislike it.
- Shape of hedonic wage function is difficult to predict.
- Might slope up, down, or be flat.

Conclusions

- A \qquad wage function is a curve showing the equilibrium relationship between market wages and job characteristics such as risk of injury.
- Curve shows tradeoff available in the market.
- Curve slopes \qquad if workers' indifference curves and firms' isoprofit curves slope up.
- In equilibrium, every worker and firm chooses a \qquad point on this curve.

Evidence on hedonic wage functions

- Clear statistical evidence of positive relationship between wages and risk of death on the job.
- Some evidence of positive relationship between wages and risk of layoff.
- Weak evidence for other hedonic wage functions.

VALUE OF A STATISTICAL LIFE

- How much are people willing to pay for reducing risk?
- How can this number help make safety regulation more efficient?

Fatal risks

- Many regulations focus on reducing risk, especially fatal risk.
- Examples:
- job hazards
- auto accidents
- airplane accidents
- dangerous chemicals in food or consumer products

Cost-benefit analysis

- Ideal policy to reduce risk should consider both cost and benefit.
- Costs are often monetary.
- But benefits are not.
- How can we calculate the benefit of reducing risk?

Willingness to pay for risk reduction

- Suppose you face a 1 in 10,000 of being hit by a car and dying on your way to class.
- How much would you be willing to pay annually to eliminate this (very small) risk?
- \$10? \$100 \$500? \$1000? \$5000?

We are not asking...

- How much would you be willing to pay to avoid certain death?
- Very different question because probability is so much larger.
- What is the present discounted value of your future earnings?
- Although this might affect your answer.

Value of a statistical life

$$
V S L=\frac{\text { willingnes s - to - pay }}{\text { size of risk reduction }}
$$

For example, if you answered \$200 to the previous question, then for you,

$$
V S L=\frac{\$ 200}{(1 / 10,000)}=
$$

More calculations

Willingness to pay to eliminate $1 / 10,000$ risk

\$10
\$100
\$500
\$1000
\$5000

Willingness to pay for safety

Slope of hedonic equilibrium curve
= slope of every worker's indifference curve.
$=\Delta$ wage $/ \Delta$ risk.
$=$ willingness to pay $/$ size of risk reduction.
$=$ \qquad —.

What are regression "controls"?

- Controls are additional explanatory variables in the regression equation.
- Controls for worker characteristics include
- Controls for job characteristics include
\qquad .

Why must controls be included in the regression equation?

- These may be correlated with job risk.
- Omitting them will bias estimate of β_{2}.
- For example, low-risk jobs such as doctors, lawyers, etc. often have \qquad wages.
- But not because they are low risk-rather, because they require \qquad -.
- Must separate the effects of education and job risk.

Computing VSL

- $\mathrm{VSL}=\Delta$ wage $/ \Delta$ risk

$$
=\left(\beta_{2} /\right. \text { units of measure for "risk"). }
$$

- Example: Suppose we estimate $\beta_{2}=\$ 50$ and "risk" is measured as deaths per 100,000 workers per year.
- Then VSL = \$50 / (1/100,000)

$$
=\$
$$

\qquad .

Typical estimates of VSL in various countries (millions of 2000 US dollars)

Country	VSL		Country	VSL
United States	7.0		Australia	4.2
Austria	$3.9-6.5$		Canada	$3.9-4.7$
India	$1.2-1.5$		Japan	9.7
South Korea	0.8		Switzerland	$6.3-8.6$
Taiwan	$0.2-0.9$		United Kingdom	4.2

W.K. Viscusi and J.E. Aldy, "The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World," Journal of Risk and Uncertainty, Vol. 27, No. 1 (2003), pp. 5-76.

U.S. historical VSL estimates and actual fatality rates

Costa, D., \& Kahn, M. E. (2004). Changes in the value of life, 1940-1980. Journal of Risk and Uncertainty, 29(2), 159-180.

Efficient safety regulation in principle

- Nevertheless, we should use value of VSL for all regulatory decisions.
- This gets biggest "bang for the buck,"
number of lives saved for a given total cost.

Inefficient safety regulation in practice

- In practice, US government agencies use values for VSL, unfortunately.
- By law, some agencies are \qquad even permitted to balance costs and benefits in setting regulations: EPA, OSHA.
- This can lead to extreme over-regulation and under-regulation.

Regulation	Year	Agency	Cost per life saved	Good or bad regulation?
Unvented space heater ban 1980 CPSC $\$ 0.1 \mathrm{~m}$ Aircraft floor emergency lighting 1984 FAA $\$ 0.7 \mathrm{~m}$ Automobile side-impact standards 1990 NHTSA $\$ 1.0 \mathrm{~m}$ Rear lap-shoulder belts for automobiles 1989 NHTSA $\$ 3.8 \mathrm{~m}$ Benzene occupational exposure limit 1987 OSHA $\$ 10.6 \mathrm{~m}$ Asbestos ban 1989 EPA $\$ 131.8 \mathrm{~m}$ Hazardous waste land disposal ban 1988 EPA $\$ 5.0 \mathrm{~b}$ W.K. Viscusi, J.K. Hakes, and A. Carlin, "Measures of Mortality Risk," J. of Risk and Uncertainty 14 (1997): pp. 228-229. [See VHV 4th ed. pp.734-735]				

Conclusions

- Value of a statistical life = willingness to pay / size of risk reduction $=\Delta$ wage $/ \Delta$ risk.
- Can be measured from regressions of worker wages on risk of death.
- VSL = roughly \$ \qquad million for U.S. (in 2000 dollars).
- In principle, same value of VSL should be used to evaluate \qquad proposed safety regulations in cost/benefit analysis.

OCCUPATIONAL SAFETY AND HEALTH REGULATION

- Why does the government regulate occupational safety and health?
- How does it regulate?
- Is there a better way?

Compensating differences in theory

- Each worker chooses the job with the most preferred wage-risk combination from the hedonic wage function.

Compensating differences in theory

 (cont'd)- Workers are matched to firms.

Occupational safety regulation in theory

- In theory, occupational safety regulation puts an upper limit on job risk.
- Firms may no longer offer high-risk jobs, even with compensating wage differentials.

Cost of occupational safety

 regulation to workers and firms- Regulation forces firms to offer lessprofitable jobs with legal risk levels.
- Workers must accept less-preferred wagerisk combinations.
- Risk falls, but utility
\qquad .

Risk misperception

- Suppose worker believes her/his job is at point A.
- In fact, job is much riskier at point B.
- Worker is \qquad off than she/he realizes.

If workers misperceive risk

- What if workers are unaware of job risks?
- Problem seems most likely for \qquad hazards:
- Toxic chemicals.
- Bio-hazards.
- In this case, worker might \qquad choose job with most preferred wage-risk combination.
- Regulation might help the worker.

Effect of regulation when workers

 misperceive risk- Now suppose gov't regulation puts an upper limit on job risk.
- Job moves to point C on hedonic wage function.
- Worker's wage falls, but utility \qquad .

Occupational safety regulation in practice

- Occupational Safety and Health Administration (OSHA) established in 1971.
- Preceded by state regulation.
- Difficult to gauge how effective OSHA has been.
- However, most studies find that it has reduced injuries and deaths only slightly, but has certainly increased employer cost.

What does OSHA do?

- Does not regulate risk directly.
- Instead sets regulations (or " \qquad ") for work practices:
- Required safety equipment.
- Exposure limits for noise, dust and chemicals.
- Gives employers little flexibility on \qquad to reduce risk.
- Inspects workplaces for violations, but very infrequently. Fines employers in violation.

What should OSHA do?

- Some people have suggested that OSHA give employers more flexibility in meeting safety targets.
- Others have suggested replacing regulation with taxes or fines for injuries.

Workers' Compensation

- Government-required (and sometimes government-run) program of insurance for occupational injuries.
- Enacted by individual states mostly between 1910 and 1920.
- Replaced earlier tort law, which was expensive and unpredictable, though it usually favored employers.

Incentives created by Workers Compensation

- Employers are charged premiums that are partly based on prior claims experience ("experience rated").
- Thus WC gives employers some incentive to improve safety.
- However, WC gives employees \qquad incentive to take care ("moral hazard").
- Some evidence that accident rates \qquad as a result of WC.
P.V.Fishback and S.E. Kantor, A Prelude to the Welfare State: The Origins of Workers' Compensation, Univ. of Chicago Press, 2000.

Conclusions

- Occupational safety and health regulation is intended to prohibit risky work environments.
- Makes sense if workers \qquad risk.
- But actual regulation focuses on safety "standards" and may not have much effect.
- Worker's Compensation insures workers against accidents but may make accidents
\qquad frequent.

COMPENSATING DIFFERENTIALS FOR RISK OF LAYOFF

- How does the risk of layoff affect wages?

Layoffs

- Some jobs do not provide continuous employment.
- Seasonal jobs (\qquad _) predictably disappear in the off-season.
- Other jobs (\qquad _)
have an unpredictable risk of layoff (British English: "redundancy").
- Are there compensating wage differentials for these jobs?

Unconstrained choice of hours

- Suppose workers can work as many hours as they choose.
- Then they will maximize utility by choosing L, C, and h^{*} at a tangency.

Distribution of hours of work

- Suppose T denotes available time over YEAR instead of week.
- Diagram says nothing about how people prefer to \qquad their hours.
- Would they prefer to work

1. 6 hours/day, 12 months/year, or
2. 8 hours/day, 9 months/year?

- Some might \qquad \#2, seasonal work.

Constrained choice of hours:

less than desired

- Other workers may not.
- Here, job B offers limited hours h_{B}.
- Given choice, this worker will choose job
\qquad over job \qquad

Constrained choice of hours: more than desired

- Other jobs may require more work hours than desired.
- Here, job C requires longer hours h_{c}.
- Given choice, this worker will choose job
\qquad over job \qquad

From possible to actual

 compensating wage differential
Requirements:

- \qquad worker must dislike constrained hours.
- Employers' \qquad profit from constrained hours must be sufficient to pay the differential.
- There is some evidence of wage differentials for seasonal work-e.g., in agriculture.

Enrico Moretti, "Do Wages Compensate for Risk of Unemployment? Parametric And Semiparametric Evidence from Seasonal Jobs," Journal of Risk and Uncertainty,
Vol. 20 (January 2000), pp. 45-66. And Semiparametric Evidence from Seasonal Jobs," Journal of Risk and Uncertainty,
Vol. 20 (January 2000), pp. 45-66.

Risk aversion

- Even if AVERAGE earnings are same, worker might prefer steadier Job A to layoff-prone Job B.

Another possible compensating

 wage differential- If most workers have these preferences, job C will have to offer a higher hourly wage to attract workers.

Unpredictable layoff

- Previous analysis assumes hours constraint is known to workers in advance.
- What if hours of work are unpredictable?

Compensating differential for layoff risk

- There is some evidence of wage differentials for layoff risk.
- One estimate: 5 percentage-point increase in probability of layoff increases wage by about
\qquad —.

Unemployment insurance (UI)

- Many jobs in U.S. today are covered by unemployment insurance (UI), a government program.
- If laid off, worker can receive weekly for a limited period while looking for a new job.
- Coverage under UI would (and apparently does) \qquad compensating wage differentials for layoff risk.

Conclusions

- If the \qquad worker dislikes constrained hours—predictable or not-then the labor market will generate a compensating wage differential for such jobs.
- There is some evidence of such differentials
- However, the differential is \qquad if worker is covered by unemployment insurance.

COMPENSATING DIFFERENTIALS FOR BENEFITS

- What does theory predict about the correlation of wages and benefits?
- What do the data show?

Isoprofit curves

- Benefits like health insurance are costly for firms.
- For fixed total compensation, a neg. tradeoff between wage and benefits.
- Isoprofit curves slope
\qquad -.

Health benefits

Hedonic equilibrium

- Suppose isoprofit curves are same for all firms.
- Then hedonic equilibrium curve is same as one of those curves.

Workers in equilibrium

- Workers with different preferences have different sets of indifference curves.
- Each worker chooses her/his most preferred location on hedonic curve.

Corner solutions

- Some workers may not want health insurance at all, possibly because they are covered under someone else's insurance plan.

What the data show

- Theory predicts a \qquad correlation between wages and employer-paid benefits like insurance.
- But a simple comparison of workers with and without employer-paid insurance shows a
\qquad correlation with wages.
- Why?

Workers with and without benefits are not comparable

- Some workers are more productive than others, due to ability, education, motivation, etc.
- Highly productive workers enjoy both higher wages AND more benefits.

Finding equally-productive workers

 with different preferences- One study compared workers who were identical except some were covered under spouse's insurance and some were not.
- Those covered under spouse's plan chose higher wages and skipped insurance.

Craig A. Olson, "Do Workers Accept Lower Wages in Exchange for Health Benefits?" Journal of Labor Economics, Vol. 20 (April 2002, part 2): S91-S114.

Conclusions

- The theory of compensating wage differentials predicts that jobs with good employer-paid benefits should have \qquad wages than jobs that do not.
- Raw data often contradict the theory.
- The trick is to compare wages and benefits of
\qquad workers with
different preferences.

EDUCATION IN THE LABOR MARKET

- How does education affect the labor market?

Educational attainment in US

sOURCE: U.S. Census, CPS Historical Time Series Tables, Table A-2, downloaded December 2023.

SOURCE: U.S. Census, CPS Historical Time Series Tables, Table A-3, downloaded December 2023.

Some basic facts

- Persons with college degrees earn
- almost \qquad as much as persons with only a high school diploma,
- and almost \qquad times as much as high school dropouts.
- Yet not everyone obtains a college degree.
- Even fewer obtain advanced degrees.
- What is the economic explanation?

Education increases productivity

- Wages vary because jobs are different (compensating differentials) but also because workers have different levels of \qquad _.
- More skilled workers earn higher wages because they are more productive (their
\qquad is greater).
- Skills can be acquired through education.

Education is costly

- Cost of education include out-of-pocket costs (books, tuition, etc.) and \qquad cost of a worker's time.
- Costs of education must be born now and rewards (higher earnings) come later.
- In this respect, education is similar to
 (machines,
computers, vehicles, etc.).

Who chooses more education?

- Workers weigh the benefits and costs of education.
- Workers are more likely to pursue education the more willing they are to \qquad for higher earnings.
- Some people may get more out of education than others. They are more likely to pursue education also.
- Skills and earnings can also increase from work
\qquad and on-the-job training.

Conclusions

- Educational attainment, though increasing, still varies across the population.
- Earnings are \qquad related to educational attainment.
- The economic explanation is that education increases \qquad _.
- Workers weigh the cost and benefits in choosing to obtain education.

A SIMPLE MODEL OF THE SCHOOLING DECISION

- College or not?

High school versus college

- Let's simplify the schooling decision into a choice between high school versus college.
- Here are mean earnings of workers 18 years and over.

SOURCE: U.S. Census, CPS Historical Time Series Tables, Table A-3, downloaded December 2023.

A simple education choice

- Assume for simplicity that education is valued only because it increases future earnings.
- Assume 18-year-old faces simple choice:

1. Begin working and earn annual wage of $w_{H S}$.
2. Attend college for 4 years, paying H dollars per year out-of-pocket. Then earn annual wage of $\mathrm{w}_{\mathrm{COL}}>\mathrm{w}_{\mathrm{HS}}$.

- Assume no change in wage over lifetime.
- Assume retires at age 65.

Alternative age-earnings profiles

Making a decision

- How should the 18 -year-old evaluate each choice?
- Just add up earnings over lifetime and subtract any out-of-pocket costs?
- No! $\$ 1$ today $\neq \$ 1$ in the future.
- Must account for \qquad value of money.

Present discounted value (PDV):

 definition- The PDV of X dollars to be received N years from now in the future is:
- amount of money one would need to put aside now, earning interest, to have X dollars by N years from now.
- $r=$ interest rate, also called \qquad
rate.

Discounting over a one-year interval ($\mathrm{N}=1$)

- Suppose X dollars will be received one year from now.
- Then $\mathrm{X}=\mathrm{PDV} \mathrm{x}(1+\mathrm{r})$, so $\mathrm{PDV}=$ \qquad .
- Example: $\$ 110$ to be received one year from now, discount rate $=10 \%$.
PDV = \qquad

Why the PDV is less than future value

- It is better to receive money today than in the future, because money received today can grow by earning interest.
- The higher the discount rate (r), the
\qquad the PDV of money received in the future.
- The longer the wait for the money (that is,

Discounting a stream of payments

- Suppose a stream of payments will be received: X_{1} dollars 1 year from today, X_{2} dollars in 2 years, X_{3} dollars in 3 years, etc.
- PDV of a stream = sum of individual PDVs:

$$
P D V=\frac{X_{1}}{(1+r)}+\frac{X_{2}}{(1+r)^{2}}+\frac{X_{3}}{(1+r)^{3}}+\ldots
$$

Discounting over many years: compounding

- Suppose X dollars will be received N years from now.
- Then $X=$ PDV $x(1+r)^{N}$.
- So PDV $=X /(1+r)^{N}$.
- Example: $\$ 1000$ to be received 5 years from now, discount rate $=8 \%$. PDV $=1000 /(1.08)^{5}=\$$ \qquad -.

Discounting a stream of payments: example

- Example: $\$ 1000$ to be received 1 year from now, $\$ 3000$ to be received in 5 years, $\$ 5000$ to be received in 10 years, discount rate $=5 \%$.
$P D V=\frac{1000}{(1.05)}+\frac{3000}{(1.05)^{5}}+\frac{5000}{(1.05)^{10}}=$
$=+\quad+\quad$.
\qquad -.
the higher N), the \qquad the PDV.

Numerical example

- Suppose
$r=0.05$,
H = \$20,000,
$\mathrm{w}_{\text {HS }}=\$ 35,000$,
$\mathrm{w}_{\mathrm{COL}}=\$ 50,000$.
- Then with the help of Excel we can compute...
- PDV of "no college" = \$ \qquad _.
- PDV of "college" = \$ \qquad .

Another numerical example

- Use same data, but let $r=0.06$.
- Then with the help of Excel we can compute...
- PDV of "no college" = \$ \qquad —.
- PDV of "college" = \$ \qquad .

Role of discount rate

- Clearly, the discount rate affects a person's choice.
- The higher the discount rate,
- the \qquad value the worker attaches to boosts in future earnings.
- the \qquad likely the worker choose more schooling.

Where does the discount rate come from?

- Discount rate reflects a person's rate of time preference-willingness to give up consumption today for consumption tomorrow. How can it be observed?
- If person has positive net worth, discount rate = interest rate on \qquad _.
- If person has negative net worth and has access to credit, discount rate $=$ interest rate paid on \qquad money.

Conclusions

- In a simple model with two choices, the worker chooses the schooling level that maximizes the
of net earnings.
- The higher the discount rate, the \qquad likely the person is to choose more schooling.

A GENERAL MODEL OF THE SCHOOLING DECISION

- How much schooling should a person get?
- Why do different people make different choices?

Deciding how much schooling

- Suppose a person can choose any amount of schooling (not just 2 choices). As before,
- More schooling provides higher wage.
- But while in school, cannot work.
- Person makes a \qquad of choices: "Should I get one more year of schooling?"
- Compares PDVs, and stops when PDV of one more year falls below current choice.

Deciding how much schooling (con't)

- Simplifying assumptions:
- Person's work life lasts forever.
- Ignore out-of-pocket costs (H).
- Under these assumptions, comparing PDVs is equivalent to comparing the \qquad
\qquad to one more year of schooling with the discount rate (r).

Wage-schooling locus

- Suppose a person can choose any amount of schooling.
- More schooling provides higher wage.

Slope of wage-schooling locus

- Slope $\Delta W / \Delta S$ = increase in wage from one-year increase in schooling for a particular person.
- Slope might decrease or increase, but not increase drastically.

Marginal rate of return to schooling

- Now MRR
$=(\Delta \mathrm{W} / \Delta \mathrm{S}) / \mathrm{W}$
$=(\Delta \mathrm{W} / \mathrm{W}) / \Delta \mathrm{S}$
$=\Delta \ln (\mathrm{W}) / \Delta \mathrm{S}$
where "In" means
"natural logarithm."
- So decreasing MRR means decreasing slope of $\ln (w)$ locus.

Why called "rate of return"?

- Suppose only cost of education is foregone earnings. (No out-of-pocket cost H.)
- Suppose a person can earn $W=\$ 30,000$ per year but another year of school would raise their wage by $\Delta \mathrm{W} / \Delta \mathrm{S}=\$ 3000$.
- Thus an "investment" of $\$ 30,000$ brings an "annual return" of \$3000.
- Then the rate of return of this investment = $(\Delta \mathrm{W} / \Delta \mathrm{S}) / \mathrm{W}=$ \qquad (assuming a long career).
- $M R R=(\Delta W / \Delta S) / W$ = percent increase in wage from one-year increase in schooling for a particular person.
- MRR generally _ and W increase, because denominator increases.

Marginal rate of return to schooling

 as Syears ofschooling

Example of MRR curve

A stopping rule

- Person should continue in school until their MRR drops below their discount rate (r).
- This rule maximizes PDV of lifetime earnings.

Example of stopping rule

- If this person's discount rate $r=25 \%$, should choose about $S=$ \qquad .
- If $r=15 \%$, should choose about $\mathrm{S}=$ \qquad -.
- If $r=10 \%$, should choose about $S=$ \qquad .

Why do people make different choices of S ?

- Above example suggest one answer: the cost of schooling (r) is different for different people.
- Another possibility is that the benefit of schooling (MRR) is different for different people.

How realistic is this model?

- Often people are uncertain about the MRR.
- Many other factors may influence schooling decision.
- At best, economic models predict \qquad behavior.
- Model still makes sense, even if MRR is constant.

Other factors influencing schooling

-
-
-
-
-
-

If person must borrow, then interest rate might rise as they borrow more.

- So r might rise with S.

$$
S=\text { years of schooling }
$$

What if r is not constant?

decisions

Conclusions

- For a particular person, more schooling yields a higher wage.
- The percent increase in the wage from one more year of schooling = ($\overline{\mathrm{MRR} \text {) to schooling. }}$
- To maximize PDV of lifetime earnings, a person should continue schooling until the MRR drops below that person's \qquad
\qquad _.

MEASURING THE RETURN TO SCHOOLING

- How can we measure the return to schooling in the real world?

Many government programs encourage people to get more schooling

K-12 programs

- Compulsory schooling laws.
- Programs for "at risk" children.

College programs

- "Bridge to college" programs.
- Loans and scholarships.
- Gov't funding of community colleges and public universities.

Are these programs worthwhile?

- Do their benefits outweigh their costs?
- Benefits depend on the return to schooling.
- To evaluate these programs, we must have reliable estimates of the return to schooling for a typical worker.
- Marginal rate of return $=\mathrm{MRR}$ $=\Delta \ln (\mathrm{W}) / \Delta \mathrm{S}$.

How much does schooling benefit a

 typical worker?- We are asking, what is the wage-schooling locus for a typical worker?
- In particular, what is the MRR $(=\Delta \ln (W) / \Delta S)$ for a typical worker?

Regression analysis of average data for

 education groups| Education | Earnings |
| :--- | :---: |
| None-8th grade | $\$ 23,277$ |
| 9th-12th grade | $\$ 27,470$ |
| High school grad | $\$ 34,197$ |
| Some college | $\$ 40,556$ |
| Associate's degree | $\$ 44,086$ |
| Bachelor's degree | $\$ 57,026$ |
| Master's degree | $\$ 69,958$ |
| Professional degree | $\$ 103,411$ |

What the data say: data on individual workers' schooling and wages
Various government agencies survey many thousands of workers on their schooling and wages (or earnings).

- Current Population Survey.
- Decennial Census.
- American Community Survey.
- etc.

Doubts

- There is a clear correlation between schooling and earnings.
- But is there a
relationship?
- Does increased schooling \qquad earnings to rise?

Ceteris paribus?

Are other things equal?

- Regression analysis compares schooling and wages of different workers.
- Aside from schooling, are workers with more schooling identical in earning power to workers who have less schooling (on average) ?
- If yes, least squares gives an \qquad estimate of MRR.
- If no, least squares is \qquad (too high or too low on average).

Regression analysis of large samples of individual data

Applying least-squares to
data on many workers:
$\ln W=\beta_{1}+\beta_{2} S$

+ error term.
Here, β_{2}
$=(\Delta \ln (\mathrm{W}) / \Delta \mathrm{S})$
$=M R R$.

Why this is a tricky problem

- We only observe what each worker actually earns with the schooling they have.
- We want to know how much a worker would earn if the same person hypothetically had more (or less) schooling.
- This is called a
\qquad .

Why did some workers get more

 schooling than others?- If reasons are unrelated to future earning power, then least squares is \qquad -.
- If reasons are related to future earning power, then least squares is \qquad .
- These workers would have earned higher wages regardless of schooling.
- Least squares is attributing their higher earnings to education, but other factors are true cause.

Ceteris paribus?

Reason person got more schooling

Would that person have earned higher wages regardless?

Laws requiring school attendance.
Laws restricting work as a minor.
Live close to community college.
Qualify for scholarships.
Parental help.
Enjoy school and have aptitude for school work.

Suppose reasons for getting more schooling are unrelated to earning power

- Then we can use other workers with different levels of schooling as counterfactuals.
- Brian and Amy are on the same "track."
- Correlation reflects
\qquad relationship.
- LS gives unbiased estimate of MRR.

Differences in "ability"

- If workers are on different "tracks," for reasons we cannot observe, economists say they have differences in "ability."
- LS estimate of MRR will be \qquad

The problem of "ability bias":

 summary- If some workers are more able than others, they may both
- choose more schooling
- and earn higher wages.
- But part of their wage advantage is due to "ability," \qquad schooling.
- If we simply compare workers, as LS does, we will \qquad -estimate MRR.

Correcting for ability bias:
 4 approaches

1) Special samples of workers.
2) Include control variables.
3) "Instrumental variables" regression instead of ordinary least-squares.
4) "Selection bias" corrections to ordinary least squares.

1) Special samples

- In ordinary samples, more able workers may be same ones who attend school longer.
- This would cause bias in estimating return to schooling.

1) Special samples: identical twins

- Suppose "ability" is genetic and we have data on identical twins.
- Compute $\Delta \ln (W)$ and ΔS for each pair.
- Ratio $\Delta \ln \mathrm{W} / \Delta \mathrm{S}=$ estimate of returns to schooling.
- But why do twins make different choices? Maybe ability is not purely genetic.

3) "Instrumental variables" regression

- Schooling depends on ability and on other variables not related to earnings (such as compulsory schooling laws) called "instruments."
- IV regression strips the schooling regressor of all influences except the instrument:

In $W=\beta_{1}+\beta_{2} S^{\prime}+$ error term.

3) "Instrumental variables" regression: examples

- A good instrument must be correlated with schooling but not directly affect ability.
- Instruments that have been tried:
- \qquad laws across states.
- \qquad (subsidizing college for veterans).
- \qquad to college.
- But often instrumental variables are not closely correlated with schooling.

4) Discontinuities

- For some state universities, admission and/or financial aid is based on high school GPA.
- Students with GPA just a hair above the cutoff are much more likely to attend college than those just a hair below.

Correcting for ability bias: assessing the 4 approaches

- Estimates of MRR vary a lot, from 5% to 15%.
- Most corrections for ability bias lower estimates of MRR slightly, but each approach has critics.
- But instrumental variables regression tends to raise the estimate of MRR.*
- Consensus now is that ability bias is not as big a problem for MRR as originally feared.
* Card, David. 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems." Econometrica, 69(5), 1127-60.

Conclusions

- Benefits of schooling depend on marginal return to schooling (MRR) for workers.
- MRR can be estimated by applying LS to data on workers.
- But workers who get the most schooling might have earned \qquad wages regardless.
- If so, LS is vulnerable to " \qquad $"$ and MRR estimates are too high.
- Various correction methods have been proposed.
- Consensus now is that ability bias is not as big a problem for MRR as originally feared.

SCHOOL QUALITY AND EARNINGS

- Does school quality affect the return to schooling?

School quality

- It is natural to suspect that the quality of schooling (not just the quantity) might affect earnings.
- Much research on this topic.
- Early research could not find a correlation between school inputs and outcomes.

Differences across states

- Study by Card and Krueger (1992) showed that differences across states in worker earnings were
- positively correlated with teacher salaries.
- negatively correlated with pupil/teacher ratios.
- Convinced economists that school quality mattered.
- Did not convince economists that effects of quality were measured with precision.

David Card and Alan B. Krueger, "Does School Quality Matter? Returns to Education and the Characteristics of Public Schools in the United States, Journal of Political Economy, Vol. 100, No. 1 (February 1992), pp. 1-40.

Bias from other unmeasured influences

- Example: class size likely affects outcomes.
- Yet comparing class sizes in different schools might not work.
- Other things are likely different as well:

Overcoming bias

- Problem is similar to " \qquad bias" in measuring effect of schooling on earnings.
- Possible approaches:

1) Special samples.
2) Include control variables.
3) "Instrumental variables" regression.
4) "Selection bias" corrections.

Special sample: Tennessee STAR program

- Tennessee Student/Teacher Achievement Ratio experiment began in 1985. Involved 6000-7000 students per year.
- Randomly assigned students and teachers to small classes (13-17) or large classes (22-25).
- Experiment students remained in same size class for 4 years.
- Outcome: Students in small classes scored on achievement tests.

Alan B. Krueger, "Experimental Estimates of Education Production Functions," Quarterly Journal of Economics, Vol. 114 (May 1999), pp. 497-532.

Israel public schools

- Use rigid rule: class size may not exceed 40.
- If enrollment reaches 41 , class is divided into two classes.
- Outcome: Again, students in small classes scored \qquad on achievement.

Joshua D. Angrist and Victor Lavy, "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," Quarterly Journal of Economics, Vol. 114 (May 1999), p. 533-575.

Control variables:

tracking individual teachers

- Research on Chicago public schools* examined outcomes for individual students over time (year-over-year change in test scores).
- Holding constant student and school characteristics, different \qquad have significantly different effects.
- New York City** did a similar study from 2007-2010. Results released to media in February 2012.
*Daniel Aaronson, Lisa Barrow, and William Sander, "Teachers and Student Achievement in the Chicago Public Schools," Journal of Labor Economics, Vol. 25 (January 2007), pp. 95-135.
** http://schools.nyc.gov/Teachers/TeacherDevelopment/TeacherDataToolkit/default

Conclusions

- The effects of school quality on educational and labor-market outcomes is an area of active research.
- Separating the effects of school quality from other influences is similar to the problem of " \qquad bias" in measuring effect of schooling on earnings.
- The effects of \qquad and individual teachers have been documented.

JOB MARKET SIGNALING

- Could schooling pay off for individual workers without making workers more productive?

Human capital model (review)

- The human capital model assumes that schooling increases productivity.
- Workers with more schooling are paid better because schooling has \qquad them more productive.

Alternative view

- The "signaling" model argues that some workers are more productive than others, regardless of schooling.
- Schooling merely helps employers
\qquad between highproductivity workers and low-productivity workers.
A. Michael Spence, "Job Market Signaling," Quarterly Journal of Economics, Vol. 87 (August 1973), pp. 355-374.

Numerical example:
2 types of workers

Type of worker	Proportion of population	PDV of lifetime productivity
Low- productivity (L)	q	$\$ 200,000$
High- productivity (H)	$1-\mathrm{q}$	$\$ 300,000$

Perfect information

- Suppose employers could easily distinguish between low-productivity (L) and highproductivity (H) workers.
- Employers are willing to pay each worker (up to) their VMP.
- In market equilibrium, each type of worker would earn a wage equal to its VMP.

Asymmetric information

- Suppose workers know how productive they are, but employers do not.
- Employers are willing to pay for productivity and workers know this.
- If employers ask job applicants
"How productive are you?" then ALL workers will answer...

Pooling equilibrium

- If employers cannot distinguish between L and H workers, they must receive the same wage in equilibrium ("pooling").
- Equilibrium (lifetime) wage
= average productivity of all workers
$=(\$ 200,000 \times q)+(\$ 300,000 \times(1-q))$.
- For example, if $q=0.6$, then equilibrium wage for all workers = \$ \qquad .

Signaling

- High-productivity workers have an incentive to provide credible information on their productivity-a" \qquad ."
- To be credible, H workers must have it, but L workers must not-perhaps because it is too
\qquad for L workers to acquire.
- Education can work as a signal IF it is more costly for L workers to acquire than it is for H workers.

Differential costs of the education signal

- Tuition rates are the same for everyone.
- What costs would be greater for L workers than for H workers?
\qquad
\qquad

(

Separating equilibrium

- All L workers choose \qquad , because for them, cost > wage boost.
- L workers are paid $\$ 200,000$.
- All H workers choose \qquad , because for them, cost < wage boost.
- H workers are paid $\$ 300,000$.
- Employers can afford this policy because all workers are paid their productivity.

Wage difference based on signal

- Recall difference in productivity $=\$ 100,000$.
- Suppose employers offer a (lifetime) wage of $\$ 300,000$ to workers who have a college degree and a wage of $\$ 200,000$ to workers who do not.
- Assume a college degree costs than $\$ 100,000$ for low-productivity workers.
- Assume a college degree costs than $\$ 100,000$ for high-productivity workers.

Empirical implications

- Human capital model and signaling model have same prediction.
-

correlation between schooling and earnings.

- Difficult to say from data which model is right.

Conclusions

- In the "signaling" model of schooling and wages, schooling does \qquad make workers more productive.
- It merely helps employers \qquad between high-productivity workers and lowproductivity workers.
- The signaling model still predicts a correlation between schooling and earnings.
- However, policies that boost schooling are not as worthwhile for society.

Policy implications

- Degree signal does NOT MAKE workers more productive-just gives them a wage boost.
- Policies that are worthwhile under the human capital model are not worthwhile under the signaling model.
- Example: Under signaling model, raising compulsory school age is

ON-THE-JOB TRAINING

- Why do workers' wages rise with age?

Age-earnings profiles

- Using survey data, one can plot earnings against age, controlling for education.
- Typical pattern is upward slope at first, then flattening out.

Features of age-earnings profiles

- Highly-educated workers earn \qquad than less-educated workers.
- Earnings rise with age, but at a
\qquad rate.
- Profiles \qquad as workers get older.
Highly-educated workers' earnings grow faster than less-educated workers' earnings.

Why do earnings rise with age?

- One explanation:

Workers continue to acquire human capital after they finish school.

- On-the-job training (OJT) is one way they acquire human capital. Includes...
- Formal training programs.
- Informal job experience.

General training

- General training = training useful at
\qquad employers. Examples:
- Learning to use Excel or Python.
- Learning to drive a truck or a forklift.
- Workers carry benefit of general training with them if they change employers.
- Thus, general training raises workers' potential wage at \qquad employers.

Specific training

- Specific training = training useful at only
\qquad employer. Examples:
- Learning a company's unique computer system, org chart, product line, procedures, etc.
- Value of specific training is lost if the worker leaves the firm.
- Thus, specific training has \qquad effect on worker's potential wage at other employers.

A two-period model:		
	First period	Second period
Total labor costs (wage + any training costs)	TLC $_{1}$	TLC_{2}
Value of marginal product (including results of training)	VMP_{1}	VMP_{2}

Two-period model when worker can

 leave after first period- If training is general, then after training, other firms are willing to pay worker wage = VMP_{2}.
- So employer must set $\mathrm{w}_{2}=\mathrm{VMP}_{2}$ to retain the worker.
- Thus we have

$$
\left(w_{1}+H\right)+\frac{w_{2}}{1+r}=V M P_{1}+\frac{V M P_{2}}{1+r}
$$

- Conclusion: $\mathrm{w}_{1}+\mathrm{H}=\mathrm{VMP}_{1}$.

Two-period model

- Let $r=$ discount rate.
- In competitive labor market, firm maximizes profit by hiring workers until

PDV of labor cost = PDV of VMP:

$$
T L C_{1}+\frac{T L C_{2}}{1+r}=V M P_{1}+\frac{V M P_{2}}{1+r}
$$

- Let $\mathrm{H}=$ training cost. If training only happens in first period,

$$
\left(w_{1}+H\right)+\frac{w_{2}}{1+r}=V M P_{1}+\frac{V M P_{2}}{1+r}
$$

Who pays for general training?

- Therefore $\mathrm{w}_{1}=\mathrm{VMP}_{1}-\mathrm{H}$.
- Worker gets reduced "training" wage during first period, but enjoys \qquad of the return in the second period.
- Competitive firms provide general training only if they pay \qquad of the cost.

Examples of general training paid for by

 worker through lower starting wages- Apprenticeship programs in construction trades.
- Hospital residencies for new medical doctors.
- Low starting salaries for attorneys, business consultants, etc.

Worker pays for general training and enjoys all of the return

What about specific training?

- If training is specific, then worker's new skills have no value at other firms.
- Even after training, other firms are only willing to pay wage $=\mathrm{VMP}_{1}$.
- So current employer must pay $\mathrm{w}_{2} \geq \mathrm{VMP}_{1}$ but does \qquad need to pay $\mathrm{w}_{2}=\mathrm{VMP}_{2}$ to keep the worker.

Should employer pay for specific training?

- Suppose employer paid the same wage in both periods: $\mathrm{VMP}_{1}=\mathrm{w}_{1}=\mathrm{w}_{2}$
- Effectively, employer pays \qquad the training cost and enjoys all the return: $\mathrm{w}_{2}<\mathrm{VMP}_{2}$.
- However, if worker quits for any reason, employer \qquad its investment.
- Needs to discourage worker from quitting.

If employer pays for specific training, its investment is at risk in second period

Should worker pay for specific training?

- Suppose worker paid all of the training cost and enjoyed all of the return: $\mathrm{VMP}_{1}-\mathrm{H}=\mathrm{w}_{1}<\mathrm{w}_{2}=\mathrm{VMP}_{2}$.
- Then $\mathrm{w}_{2}>$ alternative wage at other employers.
- If employer fires worker for any reason, worker \qquad her/his investment.
- Needs to discourage employer from firing.

Who pays for specific training?

- If training is specific, then worker's new skills have no value at other firms.
- Value of specific training is lost if worker leaves employer.
- So wage must be structured so that worker has incentive to stay AND firm has incentive not to fire the worker.

Solution: share the investment in specific training

- Worker is discouraged from quitting if worker enjoys at least some of returns from training.
- Employer is discouraged from firing worker if employer enjoys at least some of returns from training.
- Solution: must \qquad returns in second period.
- Competition forces them to also \qquad costs of training in first period.

Specific training and job tenure

- Job tenure = \qquad at a
particular employer.
- Specific training is shared investment.
- In second period,
- worker's wage < VMP, so firm wants worker to stay.
- worker's wage > wage at other firms, so worker wants to stay.
- So specific training tends to \qquad job tenure.

What the theory of specific training can explain

1) Probability of leaving a firm (quit or layoff)
\qquad with job tenure.
2) \qquad rules: "last hired, first fired."

- Senior employees are paid less than their VMP.
- So firm prefers to retain them even when business turns down.

3) \qquad layoffs common. Workers wait to be recalled rather than look for a new job.

How much training?

- In any one period, marginal cost of OJT probably rises (diminishing returns).
- Worker (and employer) choose a level of OJT that equates marginal benefit and marginal cost.

Training over the life cycle

As the worker gets older...

- MB because less time remains to recoup higher productivity before retirement.
- MC \qquad because rising wage increases opportunity cost of worker's time.

Training over the life cycle (cont'd)

As the worker gets older...

- OJT continues, but at a decreasing rate.
- So earnings rise with age and job-market experience, but at a decreasing rate.

Conclusions

- Workers' wages rise with age because they continue to invest in human capital and become more productive, even while working.
- \qquad training is paid for by the worker, often through a lower wage.
- \qquad training is a shared investment, paid for by both worker and employer.
- Wages rise at a \qquad rate because costs of training rise and benefits fall with age.

What the data typically show: Mincer earnings function

- $\log W=\beta_{1}$ $+\beta_{2}$ Schooling
$+\beta_{3}$ Experience
$+\beta_{4}$ Experience ${ }^{2}$
$+\beta_{5}$ other variables
+ error term.
- β_{2} and β_{3} are positive.
- β_{4} is \qquad -

Jacob Mincer, Schooling, Experience, and Earnings, New York: Columbia Univ. Press, 1974.

PART 3

Wage Distribution, Mobility, and Discrimination

Big ideas: Earnings and wages have become more unequal in recent decades, but proposed explanations are controversial. Workers move because the benefits of moving outweigh the costs. Discrimination is real and in some ways puzzling, but economics offers several alternative explanations.

THE DISTRIBUTION OF INCOME, EARNINGS AND WAGES

- What does the distribution of wages look like and why?

The shape of the wage distribution

Wage distributions can be computed from data sources like

- Current Population Survey.
- IRS Statistics of Income.
- Social Security detailed earnings reports.

Distribution of weekly earnings

in the U.S., 2019

- Widely dispersed.
- Not symmetric.
- Mean = \$1133
- Median = \$923
right shows that
- Most workers have low wages.
- A few workers have very high wages.

Why do different people have different

 wages?- Wages can vary for many reasons:
- Monopsony.
- Compensating wage differentials.
- On-the-job training paid for by worker.
- etc.
- However, most economists believe main reason for variation in wages is variation in worker \qquad -.

The human capital model

- Human capital model can explain many features of the wage distribution.
- Wage = VMP - OJT paid for by worker.
- Productivity (VMP) depends on
- Individual ability.
- Schooling.
- Prior on-the-job training.

Wage variation according to the human capital model

- Some workers have more ability than others.
- Some workers have more human capital than others.
- Also, younger workers are investing in human capital (OJT) and paying for it through reduced earnings.

Ability differences are reinforced

- Suppose the most able people choose the most schooling.
- Then ability differences are reinforced by differences in human capital.
- Helps explain why distribution is positively skewed.

Conclusions

- The distributions of income, earnings, and wages are widely dispersed.
- They are \qquad skewed-a few people earn a lot.
- The human capital model can explain some of this skewness, especially if ability and schooling are \qquad .

MEASURING INEQUALITY

- How can we compare inequality between countries and over time?

Differences in inequality

- Is inequality greater in the U.S. than in other countries?
- Has inequality increased over time?
- To answer these questions we need a way to measure inequality.

Quantiles

- Then divide population into groups of equal size.
- Same number of households in each group.
- 4 groups: " \qquad ."
- 10 groups: " \qquad ."
- 100 groups: " \qquad ."

Another approach

- How much income goes to each segment of the distribution?
- Begin by ordering all households from lowest income to highest income.
- Here is an artificial example with 20 households.

Quintiles

- If we divide observations into
\qquad groups of equal size, groups are called "quintiles."

Income (thousands)

Income of quintiles

Total income of quintiles (thousands)

- Then sum the income of each group.

Cumulative shares of quintiles

Cumulative shares

- Now cumulate the income shares.
- 1st is unchanged.
- New $2 n d=1^{\text {st }}+2^{\text {nd }}$.
- New 3rd $=1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }}$.
- Etc.
- Last share must equal
\qquad \%.

Income shares of quintiles

- Then divide the income of each group by the total of all groups.
- In this example, the $1^{\text {st }}$ quintile's share is less than \qquad percent.
- $5^{\text {th }}$ quintile's share is over \qquad percent.

Lorenz curve

- Graph cumulative income share against cumulative population share.
- Result is a curve with increasing slope.

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the American Statistical Association. Vol. 9 (New Series, No. 70) 209-219.

Lorenz curve with other quantiles

- What happens if we divide population into smaller groups (e.g., percentiles)?
- Lorenz curve gets smoother, more accurate.
- Still goes through -.

Extreme cases: perfect equality

- Suppose every household had exactly the same income.
- Then each quintile would have exactly a
\qquad share.

Shares with perfect equality

Extreme cases: perfect equality (cont'd)

- Graph cumulative income share against cumulative population share.
- With perfect equality, Lorenz curve would be a at 45 degrees.

Extreme cases: perfect inequality

- Perfect inequality would occur if \qquad Lorenz curve and
perfect-equality line household had all the income.
- Lorenz curve would look like a backwards "L".

Extreme values of Gini coefficient

- With perfect equality, Gini coefficient $=0 / 0.5$ $=$ \qquad .
- With perfect inequality, Gini coefficient = 0.5/0.5 = \qquad -.

Actual curve versus perfect equality

- The farther the actual Lorenz curve is from the 45-degree line, the more the distribution.

Lorenz curve and perfect-equality line

Gini coefficient

= area between Lorenz curve and equality line, divided by total area under equality line.
\qquad in this example.
, C. (1912) Italian: Variabilità e mutabilità (Variability and Mutability), C. Cuppini, Bologna, 156 pages.

Quintiles for US household income, 2022

Quintile	Share of income	Cumulative share of income
First	0.030	
Second	0.082	
Third	0.140	
Fourth	0.226	
Fifth	0.522	

SOURCE: U.S. Census Bureau, "Income and Poverty in the United States: 2022." Table A-4b, p. 33. Issued September 2023.

Lorenz curve and Gini coefficient

for US household income, 2022
Gini coefficient can be computed from areas of triangles and rectangles between Lorenz curve and equality line.
Gini coefficient $=$ \qquad .

Gini coefficients of family income

Country	Gini	Country	Gini
Canada	33.3	China	38.2
Germany	31.7	India	35.7
Sweden	29.3	Malaysia	41.1
United Kingdom	35.1	Mexico	45.4
United States	41.5	South Africa	63.0

SOURCE: CIA World Factbook, https://www.cia.gov/the-world-factbook/field/ gini-index-coefficient-distribution-of-family-income/country-comparison/, accessed December 2023. Note: household \neq family.

Limitations of Gini coefficient

- Gini coefficient is a
measure, a single number.
- Cannot distinguish between inequality in different parts of the distribution.
- Alternative measures of inequality are needed.

Alternative measures: wage gaps

- 90-50 wage gap = $\left(\mathrm{w}_{90}-\mathrm{w}_{50}\right) / \mathrm{w}_{50}$.
- 50-10 wage gap = $\left(w_{50}-w_{10}\right) / w_{10}$.
- 90-10 wage gap = $\left(w_{90}-w_{10}\right) / w_{10}$.

Income (thousands)

....90/10 US household income gap (left scale)
—Gini index of US household income inequality (right scale)

SOURCE: U.S. Census Bureau, "Income and Poverty in the United States: 2022." Tables A-4a and A-4b, pp. 33-34. Issued September 2023.

SOURCE: U.S. Census Bureau, "Income and Poverty in the United States: 2022." Tables A-4a and A-4b, pp. 33-34. Issued September 2023.

Conclusions

- To compare inequality across countries or over time, we need a way to measure it.
- A \qquad curve graphs cumulative shares against cumulative population.
- A \qquad coefficient = area between Lorenz curve and perfect equality line / 0.5.
- Other measures of inequality are the 90-50 wage gap and the 50-10 wage gap.

TRENDS AND EXPLANATIONS OF U.S. WAGE INEQUALITY

- What has happened to wage inequality in the U.S. and why?

Rising wage inequality since about 1980

- Wage gap between top and bottom of wage distribution \qquad .
- Wage differentials between education groups, and between experience groups widened.
- Wage differentials within each education and experience group also widened.

Role of human capital

- Much of the rising wage inequality is a rising return to \qquad .
- Wage advantage of college graduates over high school graduates fell from 1970 to 1980, but rose steadily since then.
- Simultaneous rise in wage advantage of experienced workers over new workers.

Modeling skill differences

- Most explanations focus on supply and demand for skilled versus unskilled workers.
- Let ReIW = wage of skilled workers / wage of unskilled workers.
- Let RelE = employment of skilled workers / employment of unskilled workers.

No single explanation

- Early research searched for a single explanation for this rise in inequality.
- \quad shifts: changes in educational attainment, immigration
$\overline{\text { technological change }}$ shift
- Changes in wage-setting decline of unionism, decline in real minimum wage.
- No single explanation explains even half of the increase.
- Area of ongoing research and debate.

Relative demand and supply

- Assume relative supply of skilled workers is perfectly inelastic in short run.
- In long run, higher returns to skill would encourage more workers to acquire skills.
- Relative demand is downward-sloping because workers of different skills can be substituted somewhat.
- If RelW is large, then employers prefer to hire
\qquad skilled workers and unskilled workers.

Relative demand and supply

- In equilibrium relative wage of skilled workers is given by intersection.
- Normally expect RelW* > \qquad

Why would RelW* increase?

- Two possibilities.
- First is that relative supply might shift
\qquad .
- However, data show that relative supply of skilled workers has
not decreased.

Must be shift in relative demand

- Second possibility is that relative demand might shift \qquad .
- Moreover, it would have to shift a lot because relative supply has also shifted
\qquad .

Supply shifts

- Most of the explanation for increased inequality must be \qquad shifts.
- Yet supply shifts can still help explain some of nuances in the trends.
- College enrollment in 1960s and 1970s.
- Immigration.

College enrollment in 1960s and 1970s

- Male college enrollment rose rapidly in the late 1960s and early 1970s, then slowed.
- Shifted relative supply of skilled workers __ very rapidly in 1970s.
- Effect was brief fall in RelW from 1970-80.

Immigration

- Immigration (legal and illegal) increased in the 1980s.
- Many immigrants were high school dropouts.
- This would have increased relative supply at the very \qquad of wage distribution.
- Helps explain some of the relative wage decrease for these workers.

Demand shifts

- Most of the explanation for increased inequality must be demand shifts.
- Most research attention focused on
- Increased \qquad _.
-

(especially computers).

International trade

- Expanding international trade has
- increased employment in exporting industries
- decreased employment in importing industries.
- Workers employed in exporting industries tend to be better-educated than workers in importing industries.
- So imports hurt low-skilled workers and exports help high-skilled workers.

Technological change

- Many have suggested that changes in technology might increase relative demand for \qquad workers.
- However, difficult to measure technological change directly.
- Some researchers simply control for everything else (supply shifts, int'l trade, etc.) and attribute any remaining relative wage change to technological change.

Technological change: computers

- Evidence shows that workers who use computers tend to be highly educated.
- Some evidence shows that capital (including computers) and skills are \qquad in production.
- But evidence that computers help skilled workers and hurt unskilled workers is indirect.

Revisionist view

- Some recent papers argue that technological change is not a major culprit.
- 50-10 wage gap grew sharply in 1980 s and then \qquad .
- Yet the computer revolution and internet revolution continue to today. 20(4), 733-83

Another view

- Others point out that 90-50 wage gap continued to increase.
- Changes in wages were "polarized" in 1990s.
- strong persistent increase in inequality in \qquad half of distribution.
- little further increase inequality in \qquad half of distribution.
- Suggests that simple "high-skill versus lowskill" framework is inadequate.

Another view (cont'd)

Hypothesize that computer technology

- \qquad demand for educated professionals and managers
- \qquad demand for middleeducated white-collar and manufacturing workers
- had \qquad on demand for lowskilled workers such as health aides, security guards, orderlies, cleaners, and servers.

Autor, Katz, and Kearney (2008).

Decline of unionism

- Fraction of U.S. workforce who are unionized has declined since 1960s, especially in private sector.

SOURCE: www.bls.gov, series LUU0204899700 and LUU0204899600, downloaded December 2023.

Decline of unionism (cont'd)				
	1983		2022	
	Union members	Covered by unions	Union members	Covered by unions
Private sector	16.5\%	14.3\%	6.0\%	6.8\%
Public sector	36.7\%	45.5\%	33.1\%	36.8\%
All	20.1\%	23.3\%	10.1\%	11.3\%

SOURCES: 1983-Bureau of the Census, Statistical Abstract of the United States, 2012, table 664. 2018—BLS, "Union Members-2022," tables 1 and 3.

Effects of decline of unionism on inequality

- Unions tend to raise wages about 15% on average.
- If unions had previously raised wages up for lowskilled workers, then their decline might have increased 90-10 wage gap and 50-10 wage gap.
- However, high-skilled workers rarely belonged to unions.
- So decline of unionism \qquad explain increase in 90-50 wage gap.

Puzzles remain

- Changes in \qquad and are the leading explanations.
- Yet they cannot explain why inequality increased sharply in US but not in some other industrialized countries.
- Area of ongoing research and debate.

Effects of decline of real minimum wage on inequality

- Decline in real min. wage might have increased 90-10 wage gap and 50-10 wage gap.
- However, min. wage affects only low end of wage distribution.
- So decline in real min. wage \qquad explain increase in 90-50 wage gap.

SUPERSTARS

- Why do some people earn far more than others in the same occupation?

Extremely high wages

- In some occupations, the wage distribution is extremely skewed.
- Most entertainers are barely surviving, but top entertainers make many millions per year.
- Most professional athletes make modest salaries, but top ones make many millions per year.
- Called" \qquad phenomenon."

SOURCE: USA Today, Major League Baseball Salaries 2023, https://databases.usatoday.com/major-league-baseball-salaries-2023/

Why is the wage distribution so skewed? (cont'd)

- Technology of mass production allows one person to reach a \qquad audience.
- Television allows many people to watch top athletes.
- Recordings allow many people to enjoy top entertainers.
- Small differences in ability result in
\qquad differences in VMP for
employers.

Not all occupations have superstars

Contrast with other occupations where no one enjoys a wage 10 times the average.

- Truck drivers.
- Teachers.
- Grocery clerks.
- Economists.
- Surgeons.

Conclusions

- In some occupations, "superstars" earn far more than others.
- In these occupations, small differences in ability create \qquad differences in demand.
- Technology of mass production translate small differences in ability into differences in VMP for employers.

INTERGENERATIONAL MOBILITY

- How big of an income advantage do children of high-income parents enjoy?

Is inequality passed from one generation to the next?

- Does each generation start fresh?
- Or does each generation simply inherit their position in the income distribution from their parents?
- Put differently, how strong is the relationship between parents' incomes and their children's incomes?

Data

- To answer this question, we need data on the incomes (or wages) of parents and the incomes (or wages) of their children a generation later.
- One approach is to divide all the parents into quintiles.
- Then for each parent quintile, count where the children went in the new generation's quintiles.

A transition matrix for income quintiles					
Child	Parent Quintile				
quintile	1	2	3	4	5
1	33.7\%	24.2\%	17.8\%	13.4\%	10.9\%
2	28.0\%	24.2\%	19.8\%	16.0\%	11.9\%
3	18.4\%	21.7\%	22.1\%	20.9\%	17.0\%
4	12.3\%	17.6\%	22.0\%	24.4\%	23.6\%
5	7.5\%	12.3\%	18.3\%	25.4\%	36.5\%
Source: Chetty, R., Hendren, N., Kline, P., \& Saez, E. (2014). Where is the land of opportunity? The geography of intergenerational mobility in the United States. Quarterly Journal of Economics, 129(4), 1553-1623. Table II, p. 1577. Computed using children born in 1980-1982					

A scatter plot of income percentiles

- Suppose we compute the percentiles of each parent in the parents' distribution and each child in the children's distribution.
- Some children do better than their parents and some do worse.

Summarizing the data

To summarize the data, we can estimate an equation by OLS:
child's percentile
$=\beta_{1}$
$+\beta_{2}$ parent's percentile

+ error term.
It turns out a simple line fits the data pretty well.

Interpreting the OLS line

- As always, the OLS line shows the conditional ("what-if") mean of the Y -variable.
- So for example, if the parent is in the $30^{\text {th }}$ percentile, then the child will on average be in the \qquad percentile.

OLS estimates

- Now OLS lines always pass exactly through means of the data-in this case, 50 and 50.
- So, $50=\beta_{1}+\beta_{2} 50$.
- Subtracting equations, $\left(\begin{array}{c}\text { child's } \\ \text { percentile }\end{array}-50\right)$
$=\beta_{2}\left(\begin{array}{c}\text { parent's } \\ \text { percentile }\end{array}-50\right)$

What does the value of β_{2} imply?

The larger β_{2},

- the \qquad the estimated line,
- the \qquad the income advantage enjoyed by children of high-income parents,
- the \qquad is intergenerational mobility.

What if $\beta_{2}=1$?

- Implies that children have the \qquad percentile as their parents.
- \qquad intergenerational mobility.

What if $\beta_{2}=0$?

- Implies that parent's percentile as \qquad effect on child's percentile.
-
-

intergenerational mobility.

Source: Chetty, R., Hendren, N., Kline, P., \& Saez, E. (2014). Where is the land of opportunity? The geography of intergenerational mobility in the United States. Quarterly Journal of Economics, 129(4), 1553-1623. Figure II, p. 1576.

Source: Chetty, R., Hendren, N., Kline, P., \& Saez, E. (2014). Where is the land of opportunity? The geography of intergenerational mobility in the United States. Quarterly Journal of Economics, 129(4), 1553-1623. Figure II, p. 1576.

Source: Chetty, R., Hendren, N., Kline, P., \& Saez, E. (2014). Where is the land of opportunity? The geography of intergenerational mobility in the United States. Quarterly Journal of Economics, 129(4), 1553-1623. Figure VI, p. 1591.

Trepds over time: decreasing mobility

Source: Song, X., Massey, C., Rolf, K., Ferrie, J., Rothbaum, J., \& Xie, Y. (2019). Long-term decline in intergenerational mobility in the United States since the 1950s. Proceedings of the National Academy of Sciences.

Conclusions

- Intergenerational mobility can be measured as the coefficient in an OLS regression of children's income percentiles on parents' income percentiles.
- The higher the coefficient, the \qquad mobility.
- A typical value for the U.S. today is about \qquad .
- Intergenerational mobility in the U.S. today is than in some other countries and less than in the past.

Estimates of β_{2} $0.404-0.508$
$0.381-0.404$ 0.360-0.381 $0.346-0.360$ $0.330-0.346$ 0.312-0.330 $0.292-0.312$ 0.270-0.292 $0.240-0.270$ $0.068-0.240$ Insufficient Data
\qquad

THE MIGRATION DECISION

- Why do people move?

Main motivation is usually economic

- "Differences in net economic advantages, chiefly differences in wages, are the main causes of migration."
J.R. Hicks, The Theory of Wages (1932).
- Standard economic model: workers compare wages in each location, then subtract costs of moving.
- Similar to schooling decision.

Earnings stream of stayer

- Suppose a worker, age 22, currently lives in Des Moines but is considering a move to Chicago.
- Let $\mathrm{w}_{\mathrm{n}}{ }^{\mathrm{D}}=$ wage at age n in Des Moines.
- If worker stays in Des Moines, present value of earnings stream =

$$
P D V^{D}=w_{22}^{D}+\frac{w_{23}^{D}}{(1+r)}+\frac{w_{24}^{D}}{(1+r)^{2}}+\cdots
$$

Moving costs

- \qquad cost of travel (gasoline, etc.).
- \qquad cost of moving furniture and personal goods.
- \qquad cost of moving away from friends, family, and social networks. (Different for different people and difficult to observe.)
- Let $M=$ total moving costs.

Earnings stream of mover

- Let $\mathrm{w}_{\mathrm{n}}{ }^{\mathrm{C}}=$ wage at age n in Chicago.
- If worker moves to Chicago, present value of earnings stream =

$$
P D V^{C}=w_{22}^{C}+\frac{w_{23}^{C}}{(1+r)}+\frac{w_{24}^{C}}{(1+r)^{2}}+\cdots
$$

Net gain to migration

- Net gain to migration =

$$
N G M=P D V^{C}-P D V^{D}-M .
$$

- The worker moves if net gain \qquad 0.
- Same standard model can be applied to migration \qquad a country and countries.
- Can even be applied to job changes in same city.

Implications of standard model

- Increase in PDV ${ }^{\text {C }}$ \qquad probability of a move.
- Increase in PDV ${ }^{\text {D }}$ \qquad probability of a move.
- Increase in M \qquad probability of a move.

Conclusions

- The main reasons people move are economic.
- Standard economic model defines net gain to migration as difference in present discounted value of expected earnings streams, minus moving cost:
$N G M=P D V^{C}-P D V^{D}-M$.
- Worker moves if NGM is \qquad .

INTERNAL MIGRATION WITHIN THE UNITED STATES

- What determines migration within the United States?

Mobility of Americans

From 2021 to 2022,

- 6.9 million Americans moved to a different county in the same state.
- 4.8 million Americans moved to a different state.
- 1.4 million Americans moved from abroad.

SOURCE: U.S. Census, "Pandemic did not disrupt decline in rate of people moving," https://www.census.gov/library/stories/2022/03/ united-states-migration-continued-decline-from-2020-to-2021.html

Empirical studies

- Many studies estimate the effects of location and worker characteristics on the probability of migration.
- Data generally confirm the standard economic model.
- Probability of moving is \qquad related to the net gain to migration:
$N G M=P D V^{C}-P D V^{D}-M$.

What the data show: migration and characteristics of states

- The greater the wage difference, the migration.
- The faster the employment growth in the state of origin, the \qquad the probability of migration.
- The greater the distance, the \qquad the probability of migration. Likely reason: distance is correlated with cost M .

What the data show: migration and age of workers

- The older the worker, the less the probability of migration.
- Likely reason: \qquad

SOURCE: U.S. Bureau of the Census, Geographic Mobility: 2022, Table 1, https:// www.census.gov/data/tables/2022/demo/geographic-mobility/cps-2022.html

What the data show: migration and education of workers

- The more schooling, the greater the probability of migration.
- Likely reasons:
- More \qquad of distant opportunities.
- \qquad skills with fewer alternative employers nearby.

SOURCE: U.S. Bureau of the Census, Geographic Mobility: 2022, Table 1, https:// www.census.gov/data/tables/2022/demo/geographic-mobility/cps-2022.html

Return migration and repeat migration

Some migrants return and some move on to a third location. Possible reasons:

- \qquad opportunities at destination were less than hoped.
- \qquad : temporary stay to acquire human capital ("stepping-stone" career path).

Gains from migration

- Individual migration appears to increase quality of employment match for each worker.
- Workers who choose to move enjoy a wage gain of about \qquad $\%$, on average.
- Migration in aggregate increases economic efficiency.
- Causes wages in different states to
\qquad —.

Inferring moving cost M for the marginal worker

- The marginal worker is indifferent between moving and staying.
- So net gain to migration for marginal worker= NGM = \qquad $=P D V^{N E W}-P D V O L D-M$.
- Given wages in both locations and the discount rate r, we can estimate M for the marginal worker:

$$
M=P D V^{N E W}-P D V O L D
$$

Inferring moving cost M for the marginal worker (cont'd)

- Let $w^{O L D}=$ annual wage in old location.
- Then

$$
P D V^{O L D}=w^{O L D}+\frac{w^{O L D}}{(1+r)}+\frac{w^{O L D}}{(1+r)^{2}}+\cdots
$$

- If the worker has a long career, then this sum is approximately equal to the infinite series

$$
\sum_{i=0}^{\infty} \frac{w^{O L D}}{(1+r)^{i}}=
$$

Inferring moving cost M for the marginal worker (cont'd)

- So $P D V^{O L D} \approx \frac{(1+r) w^{O L D}}{r}$.
- Similarly, $P D V^{N E W} \approx \frac{(1+r) w^{N E W}}{r}$.
- Substituting:

$$
\begin{aligned}
& M=P D V^{N E W}-P D V^{O L D} \\
& =\frac{(1+r) w^{N E W}}{r}-\frac{(1+r) w^{O L D}}{r} \\
& =\frac{(1+r)}{r}\left(w^{N E W}-w^{O L D}\right)
\end{aligned}
$$

Inferring moving cost M : example

- Suppose a young Puerto Rican is considering migrating to the U.S.
- Now $w^{\text {OLD }}=\$ 22,000$ and $w^{\text {NEW }}=\$ 48,400$.
- Assume $r=5 \%=0.05$.
- Then $\mathrm{M}=\$$ \qquad .
- Assume $r=10 \%=0.10$.
- Then $\mathrm{M}=\$$ \qquad _.

The family migration decision

- The equation $\mathrm{NGM}_{\text {wife }}+\mathrm{NGM}_{\text {husb }}=0$ is a line with slope =
- Family is indifferent between moving and staying if it is on the line.
- Family will migrate if it is above and to the right of that line.

Tied movers

- Suppose $\mathrm{NGM}_{\text {husb }}<0$, but $\mathrm{NGM}_{\text {wife }}+\mathrm{NGM}_{\text {husb }}>0$.
- Then moving is bad for husband but good for family as a whole.
- Husband is called a

Family migration

- Suppose a family has two workers.
- An efficient migration decision takes account of net gains from migration (NGM) for
\qquad workers.
- Family will migrate if total net gains are positive-that is, if

$$
\mathrm{NGM}_{\text {wife }} \quad \mathrm{NGM}_{\text {husb }}>0
$$

Unanimous decisions

- Suppose $\mathrm{NGM}_{\text {wife }}>0$, and $\mathrm{NGM}_{\text {husb }}>0$. Both workers benefit from moving, so family will surely move.
- Suppose $\mathrm{NGM}_{\text {wife }}<0$, and $\mathrm{NGM}_{\text {husb }}<0$. Family will not move.
- But there are other possibilities.

Tied stayers

- Suppose $\mathrm{NGM}_{\text {wife }}>0$, but $\mathrm{NGM}_{\text {wife }}+\mathrm{NGM}_{\text {husb }}<0$.
- Then moving is good for wife but bad for family as a whole.
- Wife is called a
\qquad .

Conclusions

- The standard economic model fits migration patterns within the U.S.
- The probability of migration is greater,
- the greater the wage difference between states.
- the \qquad the worker's age.
- the \qquad schooling the worker has.
- Family migration decisions take account of
\qquad workers' gains from migration.

Pressures on families

- Often difficult to find moves that are good for both workers.
- Conflict between what is best for individuals and what is best for family as a whole may make family less stable.
- If both workers have highly specialized skills, the optimal family destination is likely to be a
\qquad

HISTORY OF IMMIGRATION TO THE UNITED STATES

- How has immigration to the U.S. changed over time?

Importance of immigration

- In the last few decades, immigration to the U.S. and other high-income countries has increased sharply.
- U.N. estimates that as of 2020, about 281 million people lived in a country different from where they were born.

SOURCE: United Nations Department of Economic and Social Affairs, International Migration 2020 Highlights. Annex table: International migrant stock 2020.
2020 Highlights. Annex table: International migrant stock 2020.

Annual net migration flow, 2010-2020, top 10 countries

History of U.S. immigration (cont'd)

- In 1965, Congress increased number of visas and replaced national origin with " \qquad reunification" as top criterion.
- As a result, immigration has risen dramatically, with many more immigrants from Asia and Latin America.
- Illegal immigration: estimated stock of
\qquad million as of 2015.
SOURCE: Department of Homeland Security, "Estimates of the Unauthorized Immigrant Population Residing in the United States: January 2015," December 2018, https://www.dhs.gov/sites/default/files/publications/18_1214_PLCY_pops-est-report.pdf
U.S. immigration flows by source region, 1820s-2010s

SOURCE: Yearbook of Immigration Statistics 2022
https://www.dhs.gov/ohss/topics/immigration/yearbook/2022, table 2.

Explaining early immigration flows

Explaining recent immigration flows

Current U.S. policy

U.S. admits permanent immigrants in several categories:

- Family-sponsored: relatives of citizens or permanent residents $(480,000)$.
- Employment-based: workers with skills in high demand $(140,000)$.
- Diversity: coming from countries who have sent few immigrants in the past $(50,000)$.
- Refugees and asylees (varies).

Kandel, W. (2018). A primer on U.S. immigration policy. Washington, D.C.

Conclusions

- Early U.S. immigration peaked in early 1900s, and was mostly from Europe and Canada.
- From 1920s to 1960 s, a quota system limited immigration and favored northwest Europe.
- Since 1960s, immigration has increased sharply, especially from \qquad
\qquad _.

WHO IMMIGRATES INTO THE UNITED STATES?

- Immigrants are not a random sample of people from their home countries.
- Who chooses to immigrate?

Who immigrates to U.S.?

- Wages of immigrants after arriving in U.S. vary widely.
- Some enjoy wages much higher than U.S. workers, some much lower.
- There are clear patterns in wage differentials by country of origin.

Possible reasons for wage differentials

1. Immigrants from countries more similar to U.S. bring skills that are \qquad paid in the U.S. labor market.
2. Immigrants are not a random sample of workers from each source country. Instead, they represent those workers most likely to enjoy positive \qquad .

Roy* model

- Explanation \#2 assumes that potential immigrants \qquad _.
- Each sending country has people with a variety of skills.
- Educational attainment of immigrants depends on which people want to move to the U.S.
- Thus it is a model of immigrant \qquad .
*Andrew D. Roy, "Some Thoughts on the Distribution of Earnings," Oxford Economic Papers, Vol. 3 (June 1951), pp. 135-146.

Distribution of skill over workers in

Returns to skill in U.S.

- Skill = productivity
- Not directly observed, but depends on ability and schooling.
- More skilled workers enjoy higher wages in US.

PVUS

Lower returns to skill in source country

- Suppose source country has higher taxes, but better social safety net than US.
- Examples: Germany, UK, Canada.
- Then returns to skill are
\qquad in source country than in US.

Lower returns to skill in source country

Higher returns to skill in source country

- Suppose source country has lower taxes and a smaller social safety net than US.
- Examples: Many Latin American countries.
- Then returns to skill are
\qquad in source
country than in US.

Roy* model: summary

- Returns to skill in source country, compared to returns in U.S., determine the type of selection.
- Positive selection occurs from countries with
\qquad returns to skill.
- Negative selection occurs from countries with
\qquad returns to skill.
*Andrew D. Roy, "Some Thoughts on the Distribution of Earnings," Oxford Economic Papers, Vol. 3 (June 1951), pp. 135-146.

Change in base level of earnings in

 source qountry- Suppose source country has higher returns to skill.
- Suppose base level of earnings in source country in rises due to a boom.
- Number of immigrants decreases, but selection remains \qquad .

A puzzle

	Mexico	Algeria
Average educational attainment in home country	8.5 years	7.6 years
\% of immigrants to US	27%	0.0004%
Rank of immigrants to US in educational attainment	$134^{\text {th }}$	$25^{\text {th }}$

The average education level of immigrants from a country is negatively related to the number of immigrants from that country.

Lazear, E. P. (2017). The rise and fall of U.S. low-skilled immigration: comment. Brookings Papers on Economic Activity (Spring 2017), 158-163.

Change in base level of earnings in U.S.

- Suppose source country has lower returns to skill.
- Suppose base level of earnings in U.S. falls due to a recession.
- Number of immigrants decreases, but selection remains \qquad -.

Change in moving cost

- Increase in moving cost M has same effect as decrease in U.S. earnings.
- Number of immigrants decreases, but selection is \qquad -

Immigration slots are rationed

- Immigrants to U.S. are not self-selecting.
- U.S. restricts immigration to about 1 million per year, in several categories.
- family-sponsored
- employment-based
- diversity
- Last two categories give priority to skilled immigrants.

Kandel, W. (2018). A primer on U.S. Immigration Policy. Washington, D.C.

Immigrants do not entirely self-select

- U.S. law favors skilled immigrants (except for family reunification).
- So average skill level of immigrants from any country is negatively related to how many we let in from that country.

Conclusions

- According to the Roy model, the choice to immigrate depends on relative returns to skill.
- Immigrants from countries with high returns to skill tend to be \qquad skilled than natives.
- Immigrants from countries with low returns to skill tend to be \qquad skilled than natives.
- But the Roy model does not account for legal restrictions by admitting country.

IMMIGRANTS IN THE U.S. LABOR MARKET

- How well do immigrants and their children do in the U.S. labor market?

How well do immigrants do in the U.S. labor market?

- How do their earnings compare with natives?
- How fast do their earnings increase with labor market experience, compared with natives?
- Are they likely to contribute substantially in taxes, or will they be a tax burden?

Age-earnings profiles of immigrants

- Cross-section datasets collect data on individual workers at a point in time, including data on
- younger immigrants (recently-arrived),
- older immigrants (who arrived decades ago).
- Early studies used cross-section datasets to construct age-earnings profiles.

Findings of early cross-section studies

1. Most immigrants initially have wages below those of natives.
2. However, immigrants' wages seem to grow faster over time.
3. Immigrants seem to \qquad natives after about 14 years of labor market experience.

Explaining the findings

- Finding \#1 makes sense. Many immigrants initially lack language skills, education, and knowledge of the U.S. job market.
- Finding \#2 makes sense. As they learn English, gain an education, and learn about the U.S. job market, their skills and earnings should increase rapidly.
- Finding \#3 does \qquad make sense. Why should immigrants' skills exceed those of natives?

Assimilation hypothesis

Some tried to explain finding \#3 as

- Immigrants are more motivated than average people.
- "That is why they were willing to move so far for a better future."
- Once immigrants have assimilated, they outperform natives on the job.

Questioning finding \#3

- Problem with cross-section methodology.
- Older and younger immigrants are not the same people.
- From different \qquad (groups of people born at the same time).
- Different immigrant cohorts are from different countries. May have different skills.

Cohort effects in theory

- Data on different workers correspond to cohorts.
- If we simply connect the points, we might _-estimate slope of age-earnings profile.

Conclusions

- Early cross-section studies found that immigrants had steep age-earnings profiles, and that children of immigrants did much
\qquad than their parents.
- Later studies showed that these findings were biased due to \qquad _: recent immigrants brought lower skill levels than previous waves of immigrants.

JOB TURNOVER

- What happens to workers when they change jobs?

Wage consequences of quits

- Most people who quit start another job immediately.
- Young men who quit usually enjoy a wage
\qquad -.

Rising job instability?

- There is some evidence that rate of job loss (layoffs and discharges) has increased since early 1980s.
- Especially for older males and for all AfricanAmericans.
- However, difficult to separate long-term trends from business cycles.

Three facts about job turnover

A. Separation rate (quits and layoffs) is negatively correlated with age of worker.
B. Separation rate (quits and layoffs) is negatively correlated with seniority (length of time on the job) of worker.
C. Wages are positively correlated with seniority.

A. Quits, layoffs and age

- Frequency of quits and layoffs both with age of worker.
- Possible reason: Changing jobs is costly. Older workers have shorter payback period until retirement.

Hypothesis 1: the job match

- Workers vary in their productivity.
- Jobs vary in their amenities and working conditions.
- \qquad the hire, neither worker nor employer are perfectly informed.
the worker is a good match for the job.
K.G. Abraham and H.S. Farber, "Job duration, seniority, and earnings," American Economic Review, vol. 77, no. 3 (1987), pp. 278-297.

Turnover as a matching process

- If match is good, worker stays.

- If match is not so good, both worker and employer may continue searching for another match.
- Turnover is \qquad if it results in better matches.
- Turnover is also \qquad if it better accommodates changing demand for products.

Is job match the only explanation?

- The job-matching story says simply that good matches \qquad _.
- Is high seniority really indicative of a good match?
- Could there be another plausible explanation?

Hypothesis 2: movers and stayers

- Suppose there are two kinds of
 workers in the job market.
- \qquad have a high quit rate, perhaps because they have low moving costs.
- \qquad have a low quit rate, perhaps because they have high moving costs.

C. Wages and seniority

- In cross-section data, seniority is \qquad related to wages.
- If we estimate an extended Mincer equation:
$\log W=\beta_{1}+\beta_{2}$ Schooling $+\beta_{3}$ Experience
$+\beta_{4}$ Experience ${ }^{2}+\beta_{5}$ Seniority
$+\beta_{6}$ other variables + error term
then the estimate of β_{5} is usually about
\qquad and statistically significant.

Hypothesis 1:

specific human capital

- Specific human capital: Both worker and employer invest in human capital specific to firm and share returns.
- For worker, returns are paid in rising wages.
- Greater seniority
\qquad higher wages.

Wages and seniority (cont'd)

- Put differently, in crosssection data, wages and seniority are
correlated, holding constant schooling and experience.
- Why? 2 hypotheses.

Hypothesis 2: the job match

- Matching: When workers find a job that pays well, they stay.
- Higher wages seniority.
- Implies workers are receiving little specific training and turnover is not costly.
greater -

Which explanation is correct? (cont'd)

- So it appears that specific training is important and turnover is costly.
- Also helps explain why workers who are laid off suffer a wage
\qquad
sometimes a large one.

Conclusions

- Quits usually result in a wage gain. Layoffs usually result in a wage loss.
- Separations \qquad with a worker's age.
- Separations \qquad with seniority, both because of better job matches, and because some workers are movers and some are stayers.
- Wages ___ with job seniority, probably because of specific human capital.

EVIDENCE OF DISCRIMINATION

- How can we measure discrimination objectively?

Earnings differentials found worldwide

- By race in Canada, western Europe.
- By ethnicity (Malay, Indian, and Chinese) in Malaysia.
- By caste in India.
- By gender in most developed countries.
- Etc.

What is labor-market discrimination?

- Occurs when market participants consider race, gender, or other similar characteristics when making market transactions. Examples:

1. \qquad might care about gender in hiring.
2. \qquad might care about race or ethnicity of their coworkers.
3. \qquad might care about the gender or race of sellers they patronize.

But are earnings differentials evidence of discrimination?

Other explanations for differentials:

- Compensating differentials for job characteristics (hours of work, pace of work, risk of injury, etc.)
- Differentials for worker productivity (e.g., by educational attainment).

Measuring discrimination in wages

- Does the labor market reward groups differently?
- Imagine we had dataset on hourly wages and other information on blue and green workers.
- How should we measure wage differential between blue and green workers?

Raw wage differential

- Take natural logarithms of wages for all workers: $\ln \left(w_{G}\right), \ln \left(w_{B}\right)$.
- Compute means by group: $\overline{\ln \left(w_{G}\right)}, \overline{\ln \left(w_{B}\right)}$
- Subtracting, raw log wage differential
$=\Delta \ln (\mathrm{w})=\overline{\ln \left(w_{G}\right)}-\overline{\ln \left(w_{B}\right)}$
\approx overall \qquad wage advantage of green workers over blue workers.

Accounting for schooling

- Raw log wage differential is unsatisfactory measure of discrimination if blue and green workers have different levels of \qquad -

Interpreting regression equations

- α_{G} and $\alpha_{B}=$
$=$ values of $\ln (w)$ if worker had no schooling.
- β_{G} and $\beta_{B}=$
on schooling for green and blue workers, respectively.

Interpreting wage differential with schooling

- Adding and subtracting ($\beta_{G} \overline{S_{B}}$) gives
$\Delta \ln (\mathrm{w})=$
$=\left(\alpha_{G}-\alpha_{B}\right)+\left(\beta_{G}-\beta_{B}\right) \overline{S_{B}}+\beta_{G}\left(\overline{S_{G}}-\overline{S_{B}}\right)$
$=\left[\left(\alpha_{G}-\alpha_{B}\right)+\left(\beta_{G}-\beta_{B}\right) \overline{S_{B}}\right]+\beta_{G}\left(\overline{S_{G}}-\overline{S_{B}}\right)$
- If blue and green workers have same level of schooling, then $\left(\overline{S_{G}}-\overline{S_{B}}\right)=0$ and last term drops out.

Regression equations

- So estimate regression equations for blue and green workers wages against schooling:
$\ln \left(w_{G}\right)=\alpha_{G}+\beta_{G} S_{G}$

$$
\ln \left(w_{B}\right)=\alpha_{B}+\beta_{B} S_{B}
$$

Wage differential with schooling

- A property of least-squares regression is that the equation fits the sample means exactly:

$$
\begin{aligned}
& \overline{\ln \left(w_{G}\right)}=\alpha_{G}+\beta_{G} \overline{S_{G}} \\
& \ln \left(w_{B}\right) \\
& =\alpha_{B}+\beta_{B} \overline{S_{B}} .
\end{aligned}
$$

- Subtracting, log wage differential

$$
=\Delta \ln (\mathrm{w})=\overline{\ln \left(w_{G}\right)}-\overline{\ln \left(w_{B}\right)}
$$

$$
=\alpha_{G}+\beta_{G} \overline{S_{G}}-\alpha_{B}-\beta_{B} \overline{S_{B}}
$$

Interpreting wage differential with schooling (cont'd)

- $\Delta \ln (w)=$
$=\left[\left(\alpha_{G}-\alpha_{B}\right)+\left(\beta_{G}-\beta_{B}\right) \overline{S_{B}}\right]+\beta_{G}\left(\overline{S_{G}}-\overline{S_{B}}\right)$
- Term in brackets >0 if
- employers reward green worker's schooling more than blue worker's schooling ($\beta_{G}>\beta_{B}$), or
- employers pay green workers more regardless of schooling $\left(\alpha_{G}>\alpha_{B}\right)$.

"Oaxaca-Blinder decomposition" of wage differential

- Log wage differential $=\Delta \ln (w)=$
$=\left[\left(\alpha_{G}-\alpha_{B}\right)+\left(\beta_{G}-\beta_{B}\right) \overline{S_{B}}\right]+\beta_{G}\left(\overline{S_{G}}-\overline{S_{B}}\right)$

Differential due to discrimination

Differential due to difference in schooling

Oaxaca, R. L. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14, 693-709.
Blinder, A. S. (1973). Wage discrimination: reduced form and structural estimates. Journal of Human Resources, 8(4), 693-709.

Graph of Oaxaca decomposition

- Differential due to difference in schooling
- Differential due to discrimination

Extending Oaxaca's method

- Oaxaca decomposition can be applied to any groups.
- Can be applied to other variables measuring of human capital, such as labor-market and perhaps region, industry, and occupation.
- Usually, the more variables are included, the lower the estimated differential due to discrimination.

Examples of Oaxaca decompositions

	Blacks versus whites	Hispanics versus whites	Females versus males
Raw log wage differential (hourly wage)	-0.211	-0.305	-0.286
Differential due to differences in education, experience, personal characteristics, and city and region	-0.082	-0.193	-0.008
Differential due to discrimination	-0.134	-0.112	-0.279
Joseph Altonji and Rebecca Blank, "Race and Gender in the Labor Market," in Orley Ashenfelter and David Card, eds., Handbook of Labor Economics, Vol. 3C, Amsterdam, Elsevier, 1999. Table 5 part (B) 1995, lines 19-21, p. 3159.			

Examples of Oaxaca decompositions with more variables			
	Blacks versus whites	Hispanics versus whites	$\begin{gathered} \text { Females } \\ \text { versus males } \end{gathered}$
Raw log wage differential	-0.211	-0.305	-0.286
Differential due to differences in education, experience, personal characteristics, city and region, occupation, industry, and job characteristics	-0.114	-0.226	-0.076
Differential due to discrimination	-0.098	-0.079	-0.211
Joseph Altonji and Rebecca Blank, "Race and Gender in the Labor Market," in Orley Ashenfelter and David Card, eds., Handbook of Labor Economics, Vol. 3C, Amsterdam, Elsevier, 1999. Table 5 part (B) 1995, lines 19-21, p. 3159.			

What does the Oaxaca decomposition measure?

- Some would argue that differences in schooling, experience, and seniority also reflect discrimination.
- Usually termed "premarket" discrimination.

Measuring discrimination in hiring

- A number of " \qquad " have tested whether real employers discriminate by race or gender in hiring.
- These studies send out fake resumes to employers, and sometimes fake job applicants to interviews.
- The response rates for callbacks or job offers are recorded.

Bertrand and Mullanaithan (2004)

- Study sent 5000 fake resumes in response to job ads in Boston and Chicago.
- Resumes did not specify race, but used names like "Emily Walsh" and "Lakisha Washington" to hint at race.
- Holding skills constant, "Emily" got 1 callback for every \qquad resumes, while "Lakisha" got 1 callback for every \qquad resumes.
Marianne Bertrand and Sendhil Mullanaithan, "Are Emily and Greg More Employable than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination," American Economic Review, Vol 94 (Sept 2004), pp. 991-1013.

Cross (1990)

- Study sent matched pairs of job applicants to employers who advertised in newspapers in Chicago and San Diego.
- Applicants' characteristics were identical except one was Hispanic and one was nonHispanic white.
- Whites were \qquad \% more likely to be interviewed and \qquad \% more likely to get job offers.
Harry Cross, Employer Hiring Practices: Differential Treatment of Hispanic and Anglo Job Seekers, Urban Institute Report 90-4, Washington, D.C.: The Urban Institute, 1990.

Sports

- Sports fans in the U.S. are mostly white, but many players are black.
- Some studies show that ticket sales are less for teams with more black players, holding players' performance statistics constant.
- Trading cards of black players tend to sell for less than cards of white players with similar performance statistics.

Conclusions

- Wage discrimination can be measured with leastsquares regression, using datasets on workers' wages and human capital.
- The \qquad decomposition separates the wage differential due to differences in schooling from the wage differential due to discrimination.
- Audit studies have documented substantial discrimination in \qquad _.
- In sports, ticket sales and trading-card prices show fans' preferences for white players.

PREFERENCE-BASED THEORIES OF DISCRIMINATION

- Why would rational economic agents discriminate?

Model 1: Employer discrimination

- Suppose some employers prefer green workers over blue workers, despite equal productivity.
- We can represent this preference as a discrimination coefficient.

Employers' discrimination coefficient

- Assume a competitive employer faces constant market wages for workers: w_{G} for green workers w_{B} for blue workers.
- If employer is prejudiced against blue workers, employer gets \qquad utility from hiring them.
- Employer perceives price of blue workers $=w_{B}(1+d)$, where $d=$ discrimination coefficient.

Examples

- Suppose $\mathrm{w}_{\mathrm{B}}=\$ 10$.
- An employer with $d=0.4$ perceives price of blue workers $=\mathrm{w}_{\mathrm{B}}(1+\mathrm{d})=\$ 10(1+0.4)=$ \$ \qquad _.
- An employer with $\mathrm{d}=0.8$ perceives price of blue workers = $\mathrm{w}_{\mathrm{B}}(1+\mathrm{d})=\$ 10(1+0.8)=$ \$ \qquad _.

Variation in d

- Employers may have higher or lower tastes for discrimination, as measured by d.
- The greater the employer's prejudice against blue workers, the greater d.
- Unprejudiced employers have $\mathrm{d}=$ \qquad .
- Some firms (perhaps blue-owned) may prefer to hire blue workers, in which case d is
\qquad .

Production

- Assume blue and green workers are
\qquad in production.
- Assume for simplicity there are no other inputs, so production function is

$$
q=f(E)=f\left(E_{G}+E_{B}\right) .
$$

- If perceived prices of green and blue workers are different, employer will hire only the type of worker that is perceived cheaper.

Who gets hired

- An unprejudiced employer hires whichever workers really are cheaper:
- Hires all green workers if $w_{G}<w_{B}$.
- Hires all blue workers if $w_{G}>w_{B}$.
- A prejudiced employer hires whichever workers it \qquad to be cheaper:
- Hires all green workers if $w_{G}<w_{B}(1+d)$.
- Hires all blue workers if $w_{G}>w_{B}(1+d)$.

Implication: wage differential

- If supply of both types of workers is perfectly inelastic (vertical) then wages will adjust until all workers are employed.
- If proportion of prejudiced firms is greater than fraction of green workers, then
w_{B} \qquad W_{G} in equilibrium.

Mildly prejudiced employer hires only

 blue workers, but fewer of them- Mildly prejudiced firm might still perceive blue workers to be cheaper: $w_{B}\left(1+d_{M}\right)<w_{G}$.
- Hires until
$\mathrm{w}_{\mathrm{B}}\left(1+\mathrm{d}_{\mathrm{M}}\right)=\mathrm{VMP}$.
- The higher d,
the
workers are hired.

Mildly prejudiced employer has lower profit, ceteris paribus

- Actually pays the lower wage (w_{B}).
- However, hires too few workers.
- So has lower monetary profit.

Severely prejudiced employer has

 even lower profits, ceteris paribus- Severely prejudiced firm pays workers more than necessary.
- And hires too few workers.
- So has even lower monetary profit.

Market demand for blue workers with employer discrimination

- As relative wage $\mathrm{w}_{\mathrm{B}} / \mathrm{w}_{\mathrm{G}}$ falls, quantity demanded of blue workers increases, for two reasons.

1. Number of firms choosing to hire blue workers \qquad —.
2. Number of workers they hire \qquad .

Severely prejudiced employer hires only green workers, and much fewer of them

- Severely prejudiced firm perceives green workers to be cheaper:
$w_{B}\left(1+d_{S}\right)>w_{G}$.
- Hires until $\mathrm{w}_{\mathrm{G}}=\mathrm{VMP}$.

Employer discrimination leads to competitive disadvantage

- In Becker's model, employers pay for prejudice with \qquad monetary profits.
- Competition (with free entry and exit of firms) might eventually drive them out of the industry.
- Perhaps replaced by unprejudiced (hence
\qquad profitable) firms in long run.

Market equilibrium with employer discrimination

- A decline in prejudice (d) shifts market demand to the right and \qquad W_{B} / w_{G}, ceteris paribus.
- An increase in the supply of blue workers shifts supply to the right and \qquad w_{B} / w_{G}, ceteris paribus.
Market demand

Model 2: Employee discrimination

- Suppose green workers dislike working with blue workers, but blue workers are indifferent.
- Again, we can represent this preference as a discrimination coefficient.

Example

- Suppose $\mathrm{w}_{\mathrm{G}}=\mathrm{w}_{\mathrm{B}}=\$ 10$ and $\mathrm{d}=0.4$.
- Then green employee who works at segregated firm perceives wage = \$ \qquad .
- Green employee who works at integrated firm perceives wage = \$10 (1-0.4) = \$ \qquad -.
- All blue employees perceive wage $=\$$ \qquad .

Model 3: Customer discrimination

- Suppose customers prefer to purchase from green workers and dislike purchasing from blue workers.
- Again, we can represent this preference as a discrimination coefficient.

Employee's discrimination coefficient

- Suppose green workers receive wage of w_{G}.
- Nevertheless, they will act as if wage is $w_{G}(1-d)$, where $d=$ discrimination coefficient, IF they are forced to work with blue workers.
- Blue workers will act as if wage is w_{B}, regardless of who they work with.

Employee discrimination leads to segregated employers

- Unprejudiced employers will choose either an all-blue workforce or an all-green workforce.
- An integrated workforce would require them to pay green workers more.
- In equilibrium, segregation, but difference in wages, employment or profitability.
- \qquad competitive disadvantage for segregation.

Customer's discrimination coefficient

- Market price of the good = p .
- If purchased from a blue worker, customers perceive the price to be $p(1+d)$.
- Example: suppose price $=\$ 10$ and $d=0.5$.
- If purchased from blue worker, customer perceives price to be \$ \qquad _.

Customer discrimination leads to different job assignments

- Employers will respond to customer discrimination by assigning blue workers to jobs requiring less customer contact.
- Are wages different in equilibrium?
- Suppose there are enough green workers to fill high-contact positions.
- In equilibrium, \qquad difference in wages, employment or profitability.

Customer discrimination can lead to wage differentials

- Suppose there are not enough green workers to fill high-contact positions.
- Then price of products sold by blue workers must \qquad to compete with products sold by green workers. So blue workers' VMP falls.
- In equilibrium, wages of blue workers will be \ldots than green workers.
\qquad

Conclusions

- Becker's theory of discrimination assumes discrimination is driven by \qquad .

1. Employer discrimination causes segregated workplaces and wage differentials, but is for prejudiced employers.
2. Employee discrimination causes segregation but not wage differentials.
3. Customer discrimination causes discriminated workers to be assigned to \qquad positions.

OTHER ECONOMIC THEORIES OF DISCRIMINATION

- Why would rational economic agents discriminate?

Other theories of discrimination

1. Statistical discrimination

- Labor market is competitive.
- Employer uses group membership to infer individual's productivity.

2. Monopsony wage discrimination.

- Labor market is not competitive.
- Employer uses group membership to set wages.

Model 1: Statistical discrimination

- Suppose employers have no personal preferences about which workers they hire.
- However, suppose membership in a group conveys information about a worker's skills and productivity, such as
-
-
- \qquad

Impact of statistical discrimination in labor markets

- Individual workers' wages depend partly on own qualifications and partly on their group's average productivity.
- Holding personal qualifications constant, green workers will
- be \qquad likely to be hired,
- receive \qquad wage offers.

Example

- Suppose a green worker and a blue worker apply for same job.
- Qualifications on paper are same.
- However, suppose employer knows that, on average, green workers are better team players, more willing to work overtime, and less likely to quit.
- Employer will want to use this information in hiring decision.

Statistical discrimination in other markets

- As a group, women tend to live longer than men, so life insurance is priced \qquad for women than men.
- As a group, teenagers have more traffic accidents than older drivers, so auto insurance is priced \qquad for teenage drivers.

Model 2: Monopsony wage discrimination

- Suppose employers have no personal preferences about which workers they hire.
- But suppose employer faces \qquad sloping labor supply.
- Employer has market power, and will set wage
\qquad VMP.
- In addition, employer may set different wages for different groups, even though VMP same.
- Similar to monopoly price discrimination in product markets.

Monopsony profit maximization (review)

- Monopsonist hires labor to the point where the contribution of last worker to revenue = contribution to cost.
- In other words, choose E so that $\mathrm{VMP}=\mathrm{MLC}$.

Monopsonsist's wage depends on elasticity of labor supply

- To maximize profit, monopsonist sets MLC=MVP,

$$
w\left(1+\frac{1}{\varepsilon_{S}}\right)=M V P
$$

to get wage formula: $w_{M}=\frac{M V P}{\left(1+\frac{1}{\varepsilon_{S}}\right)}$.

- Example: suppose MVP $=\$ 20$.

If $\varepsilon_{\mathrm{S}}=3$, then $\mathrm{w}_{\mathrm{M}}=\frac{\$ 20}{\left(1+\frac{1}{3}\right)}=\frac{\$ 20}{4 / 3}=\$$ \qquad -
If $\varepsilon_{S}=9$, then $\mathrm{w}_{\mathrm{M}}=\frac{\$ 20}{\left(1+\frac{1}{9}\right)}=\frac{\$ 20}{10 / 9}=\$$ \qquad -

Monopsonist's marginal labor cost (review)

- Marginal labor cost = MLC
= increase in labor cost (wE) that results from hiring one more unit of labor
$=\Delta($ labor cost $) / \Delta \mathrm{E}$.

MLC and elasticity of labor supply

- We showed earlier that

$$
M L C=w+E\left(\frac{\Delta w}{\Delta E}\right)
$$

where $\Delta \mathrm{w} / \Delta \mathrm{E}=$ slope of labor supply curve.

- A little algebra shows that

$$
\begin{aligned}
& M L C=w+w \frac{E}{w}\left(\frac{\Delta w}{\Delta E}\right) \\
& =w+w\left(\frac{1}{\varepsilon_{S}}\right)=w\left(1+\frac{1}{\varepsilon_{S}}\right) .
\end{aligned}
$$

Monopsony creates gap between MVP and wage

- Again, monopsonist sets MVP=MLC,

$$
M V P=w+w\left(\frac{1}{\varepsilon_{S}}\right)
$$

- Now subtract w and divide by w to get percent gap between MVP and wage:

$$
\frac{\mathrm{VMP}-\mathrm{w}_{M}}{\mathrm{w}_{M}}=
$$

Interpreting the gap

- $\frac{\text { VMP }-}{\mathrm{w}}=\frac{1}{\varepsilon_{S}}$
= gap between wage $\&$
VMP, as \% of wage.
= Pigou's "rate of exploitation."
- Examples:

If $\varepsilon_{s}=3$, gap $=$ \qquad -
If $\varepsilon_{s}=9$, gap $=$ \qquad

Arthur C. Pigou, The Economics of Welfare, $2^{\text {nd }}$ ed., London: Macmillan and Co., 1924, p. 754.

Wage discrimination and labor supply elasticity

- Suppose different groups of workers are equally productive (same \qquad).
- But have different labor supply elasticities
\qquad _).
- Then monopsonist can further increase profit by setting different wages by group.
- Group with largest elasticity (most mobile) gets the \qquad wage.

Conclusions

1. Statistical discrimination occurs when employers use group membership to infer productivity.

- Hiring and wage depend partly on individual characteristics and partly on \qquad .

2. Monopsony wage discrimination occurs when employers have market power and can pay different wages to different groups.

- Group with the more-elastic labor supply will get the \qquad wage.

Monopsony wage discrimination by gender

- Are men more mobile than women?
- Men's elasticity of labor supply to the market is less than women's.
- However, men may be better able to switch employers than women. So their elasticity of supply to a particular employer may be greater.
- If so, monopsony predicts they will get
\qquad wages than women.

Wage and labor supply elasticity

- $\frac{\text { VMP-w }}{\mathrm{w}}=\frac{1}{\varepsilon_{S}}$ implies that gap between wages and VMP is smaller, the \qquad the elasticity of labor supply ε_{s}.

BLACK-WHITE WAGE RATIO

- What has happened to the blackwhite wage differential in the U.S., and why?

Recall Oaxaca decomposition

- Roughly half of wage differential is due to differences in human capital.
- Half is due to discrimination (in Oaxaca's sense).

	Blacks versus whites
Raw log wage differential (hourly wage)	-0.211
Differential due to differences in education, experience, personal characteristics, and city and region.	-0.082
Differential due to discrimination	-0.134

Joseph Altonji and Rebecca Blank, "Race and Gender in the Labor Market," in Orley Ashenfelter and David Card, eds., Handbook of Labor Economics, Vol. 3C, Amsterdam, Elsevier, 1999. Table 5 part (B) 1995, lines 19-21, p. 3159.

Possible reasons for trends

1. Quantity and quality of schooling for black workers.
2. Public policy.
3. Decline in labor force participation.

Trends in relative wages

- Ratio of black women's wages to white women's wages rose sharply from slightly since then.
- Ratio of black men's wages to white men's wages increased gradually from
\qquad _.
- Why? Several possibilities have been documented.

1. Quantity and quality of schooling

- Difference in quantity of Avg years schooling has narrowed.
- Years of schooling have increased for all groups.
- Yet black-white gap in schooling has closed substantially.

Avg years 30 -year-old white man $\begin{array}{lll}\text { Avg years } & 6.0 & 12.2\end{array}$ schooling, 30 -year-old black man
Difference

High school gap has closed

SOURCE: U.S. Census, Table A-2. Percent of People 25 Years and Over Who Have Completed High School or College, downloaded December 2023.

Difference in quality of schooling has also narrowed

- Big difference in pupil-teacher ratio in 1920s (at least in South).
- Difference had disappeared by late 1950s.
- Rate of return to schooling for blacks was only about \qquad the rate of return for whites in 1940.
- Rate of return was \qquad (or greater) by late 1970s.
\qquad
\square

2. Public policy

- 1964 Civil Rights Act outlawed discrimination by race or gender.
- Executive orders 11246 (1965) and 11375 (1967) required federal contractors
"not to discriminate against any employee or applicant for employment because of race, color, religion, sex, national origin, and to take affirmative action to ensure that applicants and employees are treated during employment without regard to their race, color, sex, or national origin."

Impact of affirmative action

- There is ample evidence that affirmative action has increased \qquad of blacks at covered firms.
- Little evidence that affirmative action has directly impacted black \qquad _.
- However, affirmative action has increased employment of blacks at large firms, which tend to pay higher wages than small firms.

3. Decline in labor force participation of Black (and White) men

SOURCE: BLS, Labor Force Participation Rate - 25 yrs \& over, downloaded December 2023.

Why did labor force participation

 decline?- One reason may be expansion of public assistance programs.
- Probably encouraged low-wage persons to drop out of labor force.

Impact of decline in labor force participation on relative wages

- Suppose low-wage persons drop out of the labor force.
- Then observed average wage rises.
- But this would NOT be progress!

Unobserved skill differences (cont’d)

- What AFQT measures is not completely clear.
- Some have claimed AFQT measures innate ability, but evidence shows it is correlated with quantity and quality of
\qquad -
- In any case, the fact that AFQT explains much of the wage differential suggests importance of " \qquad " discrimination, rather than labor-market discrimination.

Conclusions

- The black-white wage ratio rose rapidly for women from 1965-1975, and gradually for men from 1965-2005. Possible reasons:

1. Quantity and quality of blacks' schooling increased.
2. Public policy boosted employment at higherpaying firms.
3. Labor force participation at low end of wage distribution decreased.

FEMALE-MALE WAGE RATIO

- What has happened to the femalemale wage differential, and why?

Possible reasons for wage gap

- Women and men have nearly identical average values of schooling, age, and region, so these cannot be reasons.
- Possible reasons:

1. Interrupted labor-market experience
2. Occupational crowding

-

Interrupted labor market experience (cont'd)

- Evidence suggests that interrupted labormarket experience \qquad affect earnings, though unclear how much.
- Also evidence that short mandated leave under Family Medical Leave Act (FMLA of 1993) has helped women preserve their earnings level.

Recall Oaxaca decomposition

- Hardly any of raw wage differential is due to differences in human capital.
- Almost all is due to discrimination (in Oaxaca's sense).

	Females versus males
Raw log wage differential (hourly wage)	-0.286
Differential due to differences in education, experience, personal characteristics, and city and region.	-0.008
Differential due to discrimination	-0.279

Joseph Altonji and Rebecca Blank, "Race and Gender in the Labor Market," in Orley Ashenfelter and David Card, eds., Handbook of Labor Economics, Vol. 3C, Amsterdam, Elsevier, 1999. Table 5 part (B) 1995, lines 19-21, p. 3159.

1. Interrupted labor-market experience

- Many mothers drop out of the labor force while their children are young.
- So there are \qquad in these women's labor-market experience.
- It has been argued that these gaps imply
\qquad human capital acquired on the job,
- depreciation of human capital while not working,
- less incentive to acquire human capital.

2. Occupational crowding

- Many occupations are predominantly held by women or men.
- "Occupational crowding" hypothesis argues
- This is caused by employer discrimination and/or social conditioning that keeps women out of certain jobs.
- Female supply shifts right in remaining jobs, the wage.

What causes an occupation to be predominantly female?

- In the past, many laws and rules barred women (especially married women) from some occupations. But these are no longer in force.
- It has been argued that women who expect to drop out of the labor force
\qquad occupations that do not require constant updating of skills.

LS estimates for the multipleregression equation

- $\log w=\underset{(0.154)}{0.924}+\underset{(0.011)}{0.150} \mathrm{~s}-\underset{(0.001)}{0.003} \mathrm{f}$
- where $f=$ percent female (0-100).
- Interpretation: holding female share (f) constant, if schooling increases by one year, wage increases by about \qquad \%.
- Holding schooling constant, if female share increases by one percentage point, wage
\qquad \%.

Explaining little trend in relative wages from 1950 to 1980

- LFP of women was increasing rapidly.
- New women, mostly at low end of wage distribution, entered labor force.
- Controlling for this change, women's earnings were actually relative to men. -

Explaining little trend in relative wages from 1950 to 1980

- LFP of women was increasing rapidly.
- New women, mostly at low end of wage distribution, entered labor force.
- Controlling for this change, women's earnings were actually
\qquad relative to men.

Public policy: comparable worth

 programs- Occupational segregation, plus weak effect of affirmative action for white women, has led some to propose "comparable worth" programs, usually in public sector.
- Outside consultants assign points to each occupation for required effort and skills, responsibility, working conditions, etc.
- Jobs with equal points get \qquad wages.

Explaining strong upward trend in relative wages since 1980

- Increasing labor-market experience-less dropping out for children or other reasons.
- Public policy (affirmative action programs) had
- little effect on \qquad women's employment,
- but a strong effect on \qquad women's employment and presumably wages.

Impact of comparable worth programs

- Typically, programs raise women's wages relative to men's wages.
- However, as with minimum wage, labor markets are no longer in competitive
- Should expect \qquad employment in occupations whose wages are raised.
- Evidence is mixed.

Conclusions

- The female-male wage ratio is still less than 1. Possible reasons:

1. \qquad labor-market experience
2. Occupational \qquad

- The ratio has risen rapidly since at least 1980. Likely reasons:
- Increasing labor-market \qquad
- Affirmative action programs (especially for black women)

PART 4

Unions, Incentive Pay, and Unemployment

Big ideas: Unions were once crucial in setting pay but are less prevalent than they used to be. Incentive pay schemes are still prevalent, but sometimes have unintended consequences. Unemployment is inevitable in a dynamic economy, but perhaps can be ameliorated.

LABOR UNIONS IN THE UNITED STATES

- What U.S. laws govern unions?
- Is unionism increasing or decreasing in the U.S.?
- How are unions organized?

Bread-and-butter focus of U.S. unionism

- For the last 100 years, U.S. unionism has focused on improving economic conditions of members.
- In contrast to unions in other countries, U.S. unions have generally \qquad advocated socialism.
- Until perhaps recently, union members have been members of \qquad political parties.

Early challenges for U.S. unionism

- Early unionism was held in check by unfavorable legal environment.
- Unions sometimes held in violation of antitrust laws.
- In early $20^{\text {th }}$ century, employers sometimes required employees to sign agreements not to join union, so-called "yellow-dog contracts."
- If union tried to organize workers, employer sued union for inducing breach of contract.

Federal legislation that overcame early challenges

- \qquad Act of 1932
- restricted use of court orders and injunctions against unionizing activity.
- made yellow-dog contracts unenforceable.
-
- outlawed "unfair labor practices," including firing workers for union activities.
- required employers to bargain "in good faith" with unions chosen by workers in certification elections.

Later legislation that regulates unions

- \qquad Act of 1947
- Permitted states to pass "right-to-work" laws, which prohibit unions from requiring workers be union members as a condition of employment.
- Permits workers to hold elections to decertify unions.
-

Act of 1959

- required complete disclosure of union finances.
- required regular elections of union leaders.

Legal status of public-sector unions

- Federal workers
- Governed by Executive Order 10988 (1962) and Civil Service Reform Act of 1978.
- Workers free to join union or not.
- Prohibited from striking.
- State and local workers
- Governed by \qquad laws.

Summary of U.S. trends

- Fraction of workers unionized was less than 10% until the mid-1930s, except for a spike during \qquad _.
- From mid-1930s to mid-1940s, unionism rose to over 20\%, then began falling in late 1970s.
- Private-sector unionism \qquad beginning about 1970, and is now at about 7\%.
- Public-sector unionism rose in 1970 s to over 35%, and remains high.

International comparison

- When U.S. unionism began falling, unionism was still \qquad in many other countries, including Canada.
- After 1980 unionism began falling in many other countries.
- U.S. union density (percent of employed) is
\qquad than in all other industrialized countries, except France.

Organizational structure

Federation

National (or "international") unions

- American Federation of State, County and Municipal Employees (AFSCME).
- American Federation of Teachers (AFT).
- International Brotherhood of Electrical Workers (IBEW).
- NFL Players Association (NFLPA).
- United Automobile, Aerospace \& Agricultural Implement Workers of America (UAW).
- United Mine Workers of America (UMW).
- etc.

SOURCE: www.uaw.org/page/dues April 17, 2012

Who bargains with employers?

- Sometimes local unions bargain, with assistance from national union (e.g. AFT with school districts).
- Other times national unions bargain directly (e.g., UAW with GM, Ford, and Chrysler).
 , UAW with GM, Ford, and Chrysler).

Union dues

- Members typically pay about 1 percent of income in dues.
- Often deducted from paycheck (" \qquad ").
- UAW allocates 38% to local union, 32% to national union, 30% to strike fund.

Patterns of unionism:		
What occupations are most unionized?		
\% of employed	Union members	Represented by unions
Education	33.7%	37.3%
Protective service	34.6%	36.7%
Construction	16.4%	17.4%
Transportation	13.0%	14.2%
Full-t-time workers	11.0%	12.2%
Part-time workers	5.5%	6.3%

SOURCE: BLS, "Union Members-2022," http://www.bls.gov/news.release/pdf/ union2.pdf tables 1 \& 3, accessed December 2023.

Patterns of unionism: What industries are most unionized?		
\% of employed	Union members	Represented by unions
Private sector		
Utilities	19.6\%	20.7\%
Movies \& sound recording	17.3\%	17.8\%
Transport \& warehousing	14.5\%	15.5\%
Construction	11.7\%	12.4\%
Broadcasting	11.3\%	11.5\%
Public sector	33.1\%	36.8\%
SOURCE: BLS, "Union Members—2022," http://www.bls.gov/news.release/pdf/ union2.pdf table 3, accessed December 2023		

Explaining the patterns of unionism

Unions are likely to be most successful when

- workforce is stable: \qquad
- they can deliver big wage increases because employers have high rents : \qquad _.
- legal environment is favorable: \qquad .

Explaining the decrease in privatesector unionism (cont'd)

Other changes:

- Unions are winning fewer certification elections.
- Management is more aggressively opposing union organizing drives.
- Explanation: Rents may be disappearing as international trade and deregulation make industries more \qquad _.

Conclusions

\qquad Act (1935) gave legal protection to private-sector unions and encouraged rapid growth.

- Since 1970, union membership has \qquad in private sector but increased in public sector.
- Unions are most common today in utilities, transport, construction, telecommunications, manufacturing, and especially the \qquad sector.
- About \% of U.S. workers are union members now.

THE MONOPOLY UNION MODEL

- If unions can only control the wage, what wage will they set?
- What will happen to employment and welfare?

The union's problem

- Suppose union faces employer with downward-sloping labor demand.
- Suppose union first sets wages, then employer chooses employment.
- Then firm's demand curve is a for the union.

Choosing a wage

- Assume union values both wage and employment.
- Then union has
sloping indifference curves.
\xrightarrow{E}

Example

- Suppose employer's labor demand curve is VMP = 30-0.01 E.
- Suppose union's utility function is $U(w, E)=(w-10) E$.
- It can be shown with calculus that union's $M U_{W}=E$, and $M U_{E}=(w-10)$.
- So union's MRS $=\mathrm{MU}_{\mathrm{E}} / \mathrm{MU}_{\mathrm{w}}$ = \qquad -.

Example (cont'd)

Two equations:

1. Labor demand curve: $w=30-0.01 \mathrm{E}$.
2. Tangency condition: $0.01=(w-10) / E$.
Solve jointly to get

- $\mathrm{w}_{\mathrm{U}}=\$$ \qquad
- $E_{U}=$ \qquad -

Loss of employment

- Monopoly model implies that if unions raise wages, they also decrease employment.

How to decrease elasticity of labor demand

According to HicksMarshall rules, labor demand can be made less elastic by
1.
elasticity of demand for output.
2.
 substitution in production.

2. How to decrease elasticity of substitution in production

Limit use of nonlabor inputs-either through union contracts or through legislation.

- Restrict automation. Examples:
- Ban synthesizers from pit orchestras on Broadway (musicians).
- Require bonus pay for workers using labor-saving machines (coal miners).
- Impose "manning" requirements. Examples:
- At least two drivers in each locomotive (railroad unions).

Elasticity of labor demand

- Loss of employment is less (and union wage typically higher) if labor demand is elastic.
- So unions have an incentive to try to
\qquad the
elasticity of demand.

1. How to decrease elasticity of demand for output

Eliminate substitute products from the market.

- Get government to restrict imports. Example:
- Export restraints for Japanese cars (auto workers).
- Require government to purchase only from unionized firms. Example:
- Laws requiring companies under government contracts to pay "prevailing" (i.e., union) wage (construction workers).

Welfare effects of monopoly unionism

- Height of demand curve $=$ \qquad in union sector.
- Height of supply curve = value of workers' time in alternative jobs
$=$ \qquad in nonunion sector.

Effects of unionism on nonunion wage

- "Spillover" model thus predicts that unions increase employment in nonunion sector and
\qquad nonunion wages.
- Alternative "threat" model predicts the opposite.
- Nonunion employers want to forestall unionism.
- \qquad wages above the competitive level, so that workers have little reason to unionize.
- Some evidence for both models.

Welfare effects of monopoly unionism (cont'd)

- Welfare loss from unionism
= vertical gap between demand and supply for dislocated workers $=(1 / 2)\left(w_{U}-w_{N}\right)\left(E_{C}-E_{U}\right)$

Computing deadweight loss from

 unionism for U.S. economy (cont'd)- Now divide by national income to get welfare loss from unionism as a fraction of national income
$=(1 / 2) \times(\%$ union wage gap)
$\times(\%$ decrease in employment in union sector)
\times (fraction of labor force unionized)
\times (labor's share of national income)
$=$ \qquad _.

Conclusions

- The monopoly union model assumes union sets wage and then \qquad chooses employment.
- Unions raise wages but \qquad unionized employment as a result.
- Unions have incentive to make labor demand less elastic by eliminating \qquad products and limiting use of \qquad inputs.
- To the extent unions decrease unionized employment, they reduce welfare, but economywide loss of welfare is probably \qquad large.

THE EFFICIENT BARGAINING MODEL

- If unions negotiate both the wage and the employment level, what wage-employment combination will be set?

An alternative model

- The outcome of the monopoly union model is not efficient.
- Both union and firm can be made better off if they bargain over \qquad wages and employment.
- To see why, we must first derive the firm's ___curves_combinations of wages and employment that yield equal profit.

Profit and the wage (w)

- How does profit depend on wage level?
- Firm's profit
= revenue - cost

$$
=p f(E)-w E
$$

- Given any particular level of employment (E), a lower wage always implies \qquad cost and \qquad profit.

Profit and employment (E) (cont’d)

- Any employment level less than E^{*} yields lower profit. Workers are not hired whose VMP>wage.
- Any employment level greater than E^{*} yields lower profit. Last few workers are paid wage $>$ VMP.

Isoprofit curve

- So if employment were increased or decreased, wage would have to ___ to keep profit constant.
- Firm's isoprofit curve therefore peaks exactly on labor demand curve.

A family of isoprofit curves

- Each of the firm's isoprofit curves peak exactly on labor demand curve.
- Lower curves mean
\qquad profit.

An efficient outcome

- Both parties have incentive to move to
between firm's isoprofit curve and union's indifference curve.
- Such a change could be Pareto-improving.
- That is, there could be at least one winner and
\qquad losers.

Efficient union labor agreements...

- lie off the labor demand curve.
- must specify both wage and employment. (firm \qquad choose employment unilaterally).
- result in \qquad employment than monopoly union model.

Outcome of monopoly union model is not efficient

- At monopoly outcome, union's indiff. curve is tangent to labor demand.
- So union's indiff. curve
firm's isoprofit curve.
- Any combination of w and E between curves would make both sides better off.

Contract curve

- Tangencies between firm's isoprofit curves and union's indifference curves are Pareto optimalor
- The locus of all efficient points (tangencies) is called the "contract curve."

Where on the contract curve will the union and the firm end up?

- Higher point is more favorable to \qquad
- Lower point is more favorable to \qquad _.
- Outcome depends on relative bargaining strength of firm and union.

According to this model, how do unions affect employment?

- The efficient bargaining model predicts that union wage > competitive wage.
- What happens to employment depends on shape of contract curve (which depends on shape of union indifference curves).

Strongly efficient contracts

- If employment is exactly the same under union as under competitive labor market, then welfare loss from unionism = \qquad
- Unions just
\qquad value from firm owners to workers.

Special case: vertical contract curve

- If contract curve is vertical, then employment is
under unionism as under competitive labor market.
- Employment thus depends on w_{c}, not w_{u}.

How can a union contract specify employment levels?

- Actual union contracts rarely contain rules that directly specify employment.
- Instead, they frequently contain rules that indirectly increase employment: " \qquad rules."
- These are the same provisions discussed earlier that limit \qquad of capital for labor.

Featherbedding rules: examples

- Restrictions on use of prefabricated materials (construction workers).
- Limit on maximum brush size (painters).
- Prohibition of synthesizers at Broadway shows (musicians).
- Requirement of a "fireman" in the cab of diesel locomotives (railroad workers).

[^1] Institution, 1941.

Are actual union contracts efficient?

- Some contracts specify only the wage, but others contain "featherbedding" rules to boost employment.
- Lots of evidence that w_{u} is typically than VMP, or that
employment often depends at least partly on _ , not just w_{U}.
- However, evidence for strongly efficient contracts is mixed at best.

Conclusions

- Unions and firms have incentive to move off labor demand curve.
- Efficient contracts set wage and employment at between firm's \qquad curve and union's indifference curve.
- The \qquad curve is the locus of all such tangencies.
- Strongly efficient contracts, having a contract curve, set employment at same level as under competition.

STRIKES

- Why do labor strikes occur?

Strikes are costly

- Employers lose profits.
- Output is reduced or stopped during strike.
- Some customers might be lost permanently.
- Workers lose income.
- No paychecks during the strike.
- May even lose jobs if strike is unsuccessful.

Why do strikes occur?

- Most strikes are eventually settled with a new wage agreement.
- Union gets less than it originally demanded.
- Firm pays more than it originally offered.
- But both sides would be better off if they had reached the same agreement without a strike.

John R. Hicks, The Theory of Wages, London: Macmillan, 1932, pp. 144-146

Union resistance curve

- Union initially demands a high wage.
- As strike continues, union lowers its demand.

Duration of strike
Orley C. Ashenfelter and George E. Johnson, "Bargaining Theory, Trade Unions, and Industrial Strike Activity," American Economic Review 74 (March 1969), pp. 35-49.

| Union resistance curve |
| :--- | :--- |
| - Union initially demands |
| a high wage. |
| - As strike continues, |
| union lowers its |
| demand. |

Explaining strikes

- Most economic models of strikes assume
\qquad information.
- Union and workers, especially, are uncertain about how much the firm can afford to pay.
- Firm will always claim it cannot afford to pay much.
- Strike is union's strategy for extracting this information.

Employer response

- Employer takes union's resistance curve as given. Can either...
- settle quickly at a high wage, or
- wait out the strike for a lower wage.

Employer isoprofit curves

- Both strikes and high wages reduce the firm's profit.
- So the firm's isoprofit curves must slope

Isoprofit curves for a firm with low profit

- Typically, a firm with low profit is not hurt much by a strike.
- However, a high wage might put it out of business.
- So its isoprofit curves are fairly \qquad -.

- Firm takes a long strike, but settles for a low wage.
- Union thereby "discovers" that firm cannot afford to pay much.

Settlement

- Employer chooses wage-duration combination that maximizes its profit.

Settlement for a firm with low profit

Settlement for a firm with high profit

- Firm settles quickly for a high wage.
- Union thereby "discovers" that firm can afford to pay a high wage.

Strikes and the economy

- When strikes occur, they are costly to workers and firms.
- However, strikes are rare in U.S. today.
- So U.S. economy's overall losses from strikes (lost workdays, fall in stock market value, etc.) are very small in total.

Strikes and lockouts in U.S. involving 1000 or more workers

Conclusions

- Strikes are a puzzle to economists because both sides would be better off reaching same agreement without strike.
- Best explanation is \qquad information.
- Unions establish " \qquad ," lowering wage demand as strike continues.
- Firms reveal their ability to pay by settling when wage demand is low enough.

MEASURING THE EFFECTS OF UNIONS

- Do unions really raise wages?
- How do they affect other aspects of the job?
- How do they affect a firm's profit?

Wage gap for an individual worker

- However, we can find cross-section data sets on workers, both union and nonunion, and compare their wages.
- Need to control for other factors influencing pay, including human capital, industry, region, etc.

Example of dataset on workers

Worker	\ln (wage)	Schooling	Experience	Union status
Smith	3.22	12	5	1
Rodrigues	3.33	14	3	0
Chiang	2.81	11	22	0
Schultz	3.47	16	17	1
Miller	3.15	13	12	0
Mambelli	4.02	18	31	0
O'Hara	2.58	9	15	1
Patel	3.85	16	19	0

Estimating wage gap for individual workers

- Estimate regression equation by least squares:
$\log W=\beta_{1}+\beta_{2} S+\beta_{3} \operatorname{Exp}+\beta_{4} U$ + other control variables + error term.
- LS provides estimate of...

$$
\begin{aligned}
& \beta_{2}=\text { return to } \\
& \beta_{3}=\text { return to } \\
& \beta_{4}=
\end{aligned}
$$

What does wage gap measure?

- Wage gap compares \qquad workers.
- Are they comparable, on average?
- If union wage > competitive wage, then there is excess supply of workers to the union sector. Union employers can be choosy.
- So, union workers are likely to be \qquad skilled than nonunion workers, even after controlling for all variables we can observe.

Wage gap > wage gain

- Since union workers are likely more skilled, estimated wage gap is likely \qquad than true wage gain for a worker becoming unionized.
- Alternative estimation strategy is to follow same worker \qquad as they change jobs.
- Boost from switching from nonunion job to union job is estimate of wage gain-typically about
\qquad \%.

Wage gain for a whole industry

- Suppose a whole industry were to change from competitive to unionized.
- Percent increase in wage is called industry's
\qquad $=\left(w_{u}-w_{c}\right) / w_{c}$.
- Virtually impossible to measure directly because industries \qquad change from competitive to unionized in today's economy.

Wage gap for a whole industry

- However, we can find data sets on industries, with various levels of unionism, and note the correlation of the union wage differential $\left(w_{U}-w_{N}\right) / w_{N}$ with unionism.
- Again, what does this wage gap measure?
- If unions have no effect on nonunion wage ($\mathrm{w}_{\mathrm{N}}=\mathrm{w}_{\mathrm{C}}$), then wage gap \qquad wage gain.

Unions and wage dispersion

- Wages are compressed in union sector.
- Unionized employers are less free to vary wages for individuals based on performance (or anything else except job title and seniority).

| Unions and wage dispersion |
| :--- | :--- |
| - Wages are compressed |
| in union sector. |
| - Unionized employers |
| are less free to vary |
| wages for individuals |
| based on performance |
| (or anything else except |
| job title and seniority). |

Effects of unionism on nonunion wage

1. Spillover model predicts that unions increase employment in nonunion sector and
\qquad nonunion wages.
2. Threat model predicts the opposite.

- Nonunion employers want to prevent unionism.
- \qquad wages above the competitive level, so that workers have little reason to unionize.
- Some evidence for both models.

Unions and return to schooling

- Thus, return to schooling is much
\qquad in union sector than in nonunion sector.
- Return to labor-market experience is also probably \qquad .

Unions and fringe benefits

- Unionized workers generally receive
\qquad health insurance and pensions, and \qquad vacation days and sick days.
- Raises the gap (or gain) for total compensation by 2 or 3 percentage points.

Unions and turnover

- In fact, turnover is only about half as large in union firms as nonunion firms.
- Of course, since wages are \qquad , we should expect lower turnover.
- But even controlling for wages, turnover is lower in the union firms.

Richard B. Freeman, "The Exit-Voice Trade-off in the Labor Market: Unionism,
Job Tenure, Quits, and Separations," Quarterly Journal of Economics, Vol. 94 (June 1980), pp. 643-74.

Exit-voice hypothesis

- Freeman and Medoff (1984) suggested that workers are more willing to voice grievances in a unionized firm, rather than just quitting, because their jobs are more protected.
- Quits are an \qquad way for employers to gauge worker satisfaction.
- Turnover requires training new workers and slows production.

Unions and productivity

- Of course, higher union wages should decrease employment, increase use of other inputs, and raise VMP of workers.
- But even controlling for these changes, some studies show higher productivity (e.g., in construction).

Conclusions

- Unions increase wages.
- Wage gap between union and nonunion workers, controlling for education, experience, etc., averages about \qquad \%
- Wage gain from unionism averages \qquad $\%$.
- Unions compress the wage distribution and increase \qquad .
- Unions decrease turnover and sometimes increase productivity, but they decrease
\qquad —.

OCCUPATIONAL LICENSING

- How common is occupational licensing?
- Does it always benefit the public?
- How does it affect pay?

What is occupational licensing?

- Govt regulation of entry into an occupation.
- Usually at \qquad level in U.S.
- 22.3% of employed workers told CPS they hold a license for their occupation.
- Ostensible reason is to protect public from incompetent or untrustworthy persons that public could not otherwise avoid.

SOURCE: Bureau of Labor Statistics, "2016 data on Certifications and Licenses," https://www.bls.gov/cps/certifications-and-licenses.htm\#data, accessed January 8,2018 . These data are from the Current Population Survey.

Three levels of regulation

- \qquad : must file name, address, and qualifications with govt agency before working in occupation. Approval is automatic.
: anyone can work in occupation, but to be "certified," must pass exam administered by govt or nonprofit organization.
-

: no one may work in
occupation without govt approval. Must pass exam, sometimes other requirements.

What occupations are most likely to be licensed?

	Certification	License
Legal occupations	3.4%	63.4%
Education, training, \& library occupations	1.9%	53.6%
 technical occupations	4.4%	72.6%
Healthcare support occupations	3.6%	47.2%

SOURCE: Bureau of Labor Statistics, "2016 data on Certifications and Licenses," https://www.bls.gov/cps/certifications-and-licenses.htm\#data, table 5, accessed January 8, 2018. These data are from the Current Population Survey.

Growth of occupational licensing

Sources: Percentages unionized are from the Current Population Report, various years, Kleiner and Krueger (2013).
extends from state only estimates to the Gallup and Westat PDII estimates, which include licensing by all levels of government. PDII, Princeton Data Improvement Initiative.

Possible welfare effects of licensing

- Demand for occupation may increase overall if public has greater confidence in quality. - \qquad welfare.
- However, some people may not be willing to pay for higher quality.
- \qquad welfare.
- Sometimes standards are set that do not benefit public (e.g., hard but irrelevant exam questions).

How is licensing similar to unionism?

- Licensing agencies do not set wages.
- However, by setting high standards they effectively restrict entry.
- This will raise pay indirectly, potentially generating rents.

Who enjoys the rents?

- If licensing agency restricts entry through very high standards (e.g., difficult exams) then potential entrants must invest in high levels of training (e.g., exam preparation).
- New entrants enjoy only a \qquad rate of return on their human capital investment.
- But existing practitioners who are "grandfathered" enjoy high pay without the investment-thus enjoy \qquad .

Licensing that does not benefit the public

- Some occupations seem to be licensed unnecessarily. - Public should be able to recognize incompetent or untrustworthy practitioners without help.
- Possible examples:

Gittleman, M. \& Kleiner, M. M. (2016), "Wage effects of unionization and occupational licensing coverage in the United States," Industrial and Labor Relations Review, (69)1, pp. 142-172.

Effects of licensing on pay

- Tricky to estimate because licensed workers might differ from others in many ways.
- One study estimated licensing increased pay
\qquad , whereas union membership increased pay 10\%-20\%.
- Thus licensing raised pay only about half as much as union membership.

North Carolina State Board of Dental Examiners
v. Federal Trade Commission

- NC Board banned non-dentists from offering teeth-whitening services.
- Federal Trade Commission ordered Board to stop, calling ban anticompetitive, and noting that majority of Board were practicing dentists.
- FTC sustained by U.S. Supreme Court in 2015.

Conclusions

- Almost \qquad of workers are licensed.
- Licensing ostensibly protects the public from incompetent or untrustworthy practitioners.
- However, it restricts supply, sometimes in occupations where the public does \qquad need protection.
- Licensing raises pay about \qquad as much as unionism does.

PIECE RATES AND TIME RATES

- What are "piece rates"?
- Which employers choose them?
- Which workers choose them?
- What are their disadvantages?

Motivating effort

- Employers want to ensure their workers exert effort on the job.
- In some jobs, it is easy for employers to monitor workers' effort. Examples:
\qquad
- Hard to take even short breaks or cut corners without employer noticing.

Motivating effort (cont’d)

- In other jobs, the employer cannot easily monitor workers' effort. Examples:

Easy to take short breaks or cut corners without employer noticing.

- Employer has little (or much delayed) information about any particular worker's effort.

What are piece rates?

- Worker receives payment based on worker's individual \qquad _.
- Contrast with "time rates": payment based on \qquad on the job.
- Employer's preferred payment system depends on whether it is easier to measure a worker's output, or a worker's input (time on the job).

Incentive pay

- Human resources specialists have many ideas about how to encourage employee effort.
- In this class, we will consider some economic ideas—that is, ideas related to pay:
- Piece rates
- Tournaments
- Delayed compensation
- Efficiency wages

Which is easier to measure?

Easier to measure output

- Agricultural workers: e.g., picking berries.
- Clothing workers.
- Sales workers.
- Coal miners long ago.
- Tasks where quality inspection is \qquad
- Tasks where quality inspection is \qquad .

Effort and output

- Greater effort yields greater output.
- However, greater effort also yields disutility.
- Marginal cost of output to worker reflects rising marginal disutility of effort required to produce more output.

Differences across workers

- Workers will have different MC curves.
- Some will be more able, or less averse to effort, than others. (Here, worker B is more able than worker A.)
- Earnings will vary accordingly.

Low-ability workers under piece rates

- Similarly Worker A could work harder, and have higher earnings.
- But chooses NOT to.
- Overall utility depends on effort and pay.
- Conclude Worker A enjoys greater overall utility by working less hard.

- Note that Worker B could work less hard, and have lower earnings.
- But chooses NOT to.
- Overall utility depends on effort and pay.
- Conclude Worker B enjoys greater overall utility by working hard.

Incentives under piece rate

- Worker exerts effort until marginal cost of output equals piece rate.
- Earnings = $q^{*} \times$ piece rate.

High-ability workers under piece rates

Low-ability workers under piece rates

- Similarly Worker A could work harder, and have higher earnings.
- But chooses NOT to
- Overall utility depends on effort and pay.
- Conclude Worker A enjoys greater overall utility by working less hard.

Worker choice of payment systems

- Time-rate systems offer a fixed hourly pay and typically require a fixed minimum level of effort.
- More able workers typically prefer piece rates.
- Less able workers typically prefer time rates.

Problems with piece rates

1. \qquad may suffer as workers rush to maximize quantity of output.
2. Less incentive to help co-workers.
3. Output and thus earnings may for reasons beyond the worker's control. Riskaverse workers will not like this. Examples:

- Bad weather
- Machine breakdowns
- Raw materials not ready on time

Differences in earnings

On average, workers on piece rates produce more and earn more than workers on time rates. Why?

1. Partly because piece rates
them to work harder.
2. Partly because moreable workers \qquad piece-rate jobs.

"Ratchet effects"

- Workers may fear that increased productivity will encourage managers to \qquad their rate of pay.
- Workers will then be \qquad to work too hard or to offer labor-saving suggestions.
- However, if a firm can credibly promise not to reduce pay rates, workers will not fear ratchet effect and become very productive.
- Lincoln Electric (www.lincolnelectric.com).

Related concept: bonuses

- Payments (typically annual) beyond regular wages or salary.
- Usually linked to worker's or firm's performance.
- Common for senior executives.

Related concept: profit sharing

- Payments related to the firm's profit.
- Depends on firm's \qquad performance, not individual worker's performance.
- Very common in Japan and Korea.
- \qquad problem: little direct
incentive for individual worker.
- However, research suggests profit-sharing plans usually \qquad increase productivity.

Conclusions

- Piece rate payment systems pay workers based on their individual
- Employer choice of payment system depends on whether it is easier to measure individual output or individual input (time).
- Piece workers earn more, partly because they are to work harder and partly because more-able workers piece rates.
- Problems of piece rates include output \qquad fluctuating earnings, and ratchet effects.

TOURNAMENTS

- Why would firms want to compensate workers according to rank order of performance?

Problems with piece rates

- One problem with piece rates is that output may \qquad for reasons beyond workers' control. Examples:
- Bad weather
- Machine breakdowns
- Raw materials not ready on time

Problems with piece rates: example

- Many sales workers are paid on commission.
- Sales may fluctuate for reasons \qquad worker effort-recession, entry of competing brands, bad weather, etc.
- Creates income uncertainty for sales workers.

Problems with piece rates (cont'd)

- Another problem is that in some settings, the employer can observe the of workers' output, but not the output itself (or at least not its value). Examples:
- On-time performance.
- Positive ratings by consumers.
- Etc.

Compensation by rank order

- Instead of compensating workers by output, compensate workers by rank order.
- Top performer gets set amount of money ("first prize").
- Second-best gets less ("second prize").
- etc.
- "Prize" could be cash bonus, promotion, etc.

Examples of compensation by rank order

- Sports tournaments.

Returns to output

- Returns to worker depend on performance of other workers.
- Moving up in rank (e.g., from $2^{\text {nd }}$ to $1^{\text {st }}$) brings a discrete jump in earnings.

$1^{\text {st }}$ prize $2^{\text {nd }}$ prize $\underbrace{$| Worker A's |
| :---: |
| total returns |}$_{\text {Dollars }}$

Returns to effort

- Output depends both on effort and random factors.
- Sometimes returns more than expected, sometimes less than expected.
- So average returns to effort are smoother, but still steep.

Marginal returns to effort

- Marginal returns =
total returns. of
total returns
- Marginal returns are higher, the
\qquad the
gap between $1^{\text {st }}$ and $2^{\text {nd }}$ prizes.

Consequences of big gap

- With a big gap between $1^{\text {st }}$ and $2^{\text {nd }}$ prizes, workers exert \qquad effort.
- Examples: golf or tennis tournaments.
- Of course, a bigger gap also creates more
\qquad about returns (due to random factors).
- Increased risk may be unattractive to some workers.

Problems with tournaments: incentives for worker collusion

- "Let's agree to split the prize money evenly, and we can both take it easy."
- Workers' incentive to exert effort is undermined by collusion.
- \qquad firm's total output and profit.
- Examples: sports scandals where players "throw" the game.

Problems with tournaments: incentives for sabotage

- Because worker's returns depend on relative performance, if the prize gap is big, worker has incentive to \qquad rivals' performance.
- \qquad firm's total output and profit.
- Examples: premed students who contaminate or destroy other students' experiments.

Conclusions

- "Tournaments" compensate workers by ___ of performance, rather than by absolute performance.
- Incentives for effort are high if \qquad between prizes is large.
- However, tournaments create incentives for worker collusion or sabotage.

DELAYED COMPENSATION

- How can employers discourage misbehavior on the job, without constantly monitoring workers?

Shirking on the job

- All employers face problem of worker misbehavior.
- Surfing the web or chatting on the phone instead of working.
- Stealing company supplies.
- Falsifying time records.
- Etc.

Costs of monitoring workers

- In many workplaces, close supervision of workers is difficult and costly.
- So employer checks workers only occasionally, firing workers caught shirking.
- But unless workers pay a \qquad of some kind, they are likely to shirk anyway.
- Result is \qquad of output and profit.

Constant-wage contract

- If employer pays a constant wage = VMP, worker has \qquad incentive to exert full effort.
- If caught shirking and fired, worker will just find another job at the same wage.

Years on the job

Delayed compensation contract

- Suppose instead that employer offers a
\qquad wage.
- Worker is initially paid
\qquad
- Later, worker is paid
\qquad than VMP.

Delayed compensation contract must be competitive with constant wage

- To attract workers, PDV of delayed compensation must $=$ PDV of constant wage.
- Put differently, PDV of shaded area A minus PDV of area B must =
\qquad .

Delayed compensation means earnings are back-loaded

- Suppose worker has worked n years, mostly at a wage below VMP.
- Then PDV of remaining earnings will be than corresponding constant wage.
- $\operatorname{PDV}(\mathrm{A})-\operatorname{PDV}(\mathrm{B})>0$.
- Firm "still owes worker money."

Compensation at end of career

- At the end of career, worker is paid a wage much greater than VMP.
- May wish to keep working!
- But employer will want to \qquad these overpayments.

Mandatory retirement

- Mandatory retirement was common in private and public sector until banned by U.S. federal law in 1986.
- Still common in other countries.
- A legal alternative in the U.S. is to restructure
\qquad to encourage
voluntary retirement from the firm.

Lazear, Edward P. 1979. "Why Is There Mandatory Retirement?" Journal of Political Economy, 87(6), 1261-84.

Will employer keep its promise?

- Firm may be tempted to
\qquad a worker
as soon as wage exceeds VMP.
- Saves the firm money in the short run.
- But if reputations are important in labor market, firm would have difficulty hiring in the long run.

	Specific human capital model	Delayed compensation model
Motivation	Preserve firm-specific human capital.	Discourage shirking.
Initial wage is...	\qquad than VMP (but less than what worker could get elsewhere).	than VMP.
Later wage is...	\qquad than VMP (but more than what worker could get elsewhere).	\ldots than VMP.
Pay rises with seniority?		
Workers stay long time with same firm?		

Conclusions

- Employers face a problem of worker shirking.
- If monitoring is expensive, shirking can still be discouraged by delayed compensation.
- Worker is initially paid \qquad than VMP, later paid \qquad than VMP.
- With wage > VMP, worker will want to continue working past expected retirement, so retirement incentives are necessary.

EFFICIENCY WAGES

- Why should a firm ever pay more than the competitive wage?

Competitive wages (cont'd)

- Firm can get all the employees and all the output it wants if it pays the competitive wage.
- \qquad reason to pay more.

Efficiency wages in developing economies

- Competitive wage may be at subsistence level, where workers are under-nourished.
- Increasing the wage allows workers to buy more food.
- Increases worker \qquad .

Competitive wages

- Time rates, piece rates, tournaments, and delayed compensation are similar.
- Structure of wage package varies to encourage effort.
- But of wage package is determined by market.

Wage above competitive wage

- However, in some settings, increased output can be obtained by paying more than competitive wage.
- Wages of this type are called wages.

Efficiency wages in industrialized economies

- Several models relating output and the wage have been suggested.
- Each model shows why employers might have a motivation for paying \qquad than the competitive equilibrium wage.

1. Shirking model
2. Sociological model (fairness and reciprocity)
3. Turnover model

1. Shirking model

- Suppose workers like to shirk (reduce effort) but close supervision is difficult and costly.
- So employer checks workers intermittently, and fires any workers caught shirking.
- Now firing is \qquad penalty if worker can find another job at same wage immediately.
- But if the employer pays a wage \qquad than other employers, firing IS a penalty.
- So workers have an incentive not to shirk.

2. Sociological models

- "Fair wage-effort" hypothesis: workers have a notion of a fair wage, based in part on the wages paid at other firms.
- If actual wage is less than fair wage, they
\qquad effort.
- If actual wage is more, they exert \qquad effort.

3. Turnover model

- Workers are constantly looking for betterpaying jobs, even while employed.
- But finding and training replacement workers can be expensive.
- Firm can save money by reducing
\qquad
- So employer pays a wage higher than the equilibrium so workers less likely to \qquad _.

Example: fast food chains

- Fast food chains are a mix of locally-owned franchises and company-owned stores.
- Franchisees probably find it \qquad to supervise their workers than the company does.
- So we might expect company-owned stores to pay "efficiency wages" because of difficulties in supervision.
- In fact, wages are about 9\% \qquad at company-owned stores than at franchises.

Example: Ford's \$5-a-day wage

- In 1914, Ford began paying $\$ 5$ a day, about
\qquad the competitive wage.
- Annual turnover dropped from 370% to 16%.
- Absenteeism dropped from 10% to 2.5%.
- Productivity and profit \qquad _.
- However, Ford's wage did not keep up with rapid inflation from 1915-1920, so "efficiency wage" did not last long.

Raff, Daniel M. G. and Lawrence H. Summers. 1987. "Did Henry Ford Pay Efficiency Wages?" Journal of Labor Economics, 5(4, Part 2), S57-S86.
Maloney, T. N. and W. C. Whatley (1995). "Making the effort: the contours of racial discrimination in Detroit's labor markets, 1920-1940. " Journal of Economic History 55(3): 465-493.

Explaining interindustry wage differentials

- There are substantial differences in wages across industries.
- Why? Are the workers different? Or are the jobs different?
- Differences remain even after controlling for workers' human capital, unionism, working conditions ("compensating differentials"), etc.
- Differences \qquad over time, so not caused by temporary shifts in labor demand and supply.

SOURCES: Quit rates -BLS, "News Release: Job Openings and Labor TurnoverNovember 2017," table 4, https://www.bls.gov/jlt/ accessed January 9, 2018. Compensation-BLS, "News Release: Employer Costs for Employee CompensationSeptember 2017," table 10, https://www.bls.gov/bls/newsrels.htm\#OCWC accessed January 9, 2018.

Explaining interindustry wage differentials (cont’d)

Two hypotheses:

- Workers in high-wage industries are more ___ than workers in low-wage
industries.
- High-wage industries are paying
\qquad
industries are not.

Are wage differentials caused by some

 industries paying efficiency wages?- Evidence in favor: Workers in low-wage industries \qquad more often than workers in high-wage industries.
- Evidence against: Workers who move from a low-wage industry to a high-wage industry do
\qquad enjoy the full increase in wage.

Dual labor markets

- What would an economy look like if SOME industries paid efficiency wages and others did not?
- Analysis is similar to minimum wages and unionism, because in one sector wages are raised \qquad equilibrium level.

Dual labor markets: primary sector

- In "primary" sector, workers have responsibility.
- Supervision is difficult.
- So employers pay efficiency wages.
- Wages are \qquad _.
- Jobs are desirable (excess supply of labor).
- Turnover is low.

Dual labor markets: secondary sector

- In "secondary" sector, workers have responsibility
- Supervision is easy.
- So employers pay competitive wages.
- Wages are \qquad -
- Jobs are less desirable, but easy to get.
- Turnover is high.

Efficiency wages and unemployment

- What would an economy look like if ALL employers paid efficiency wages?
- Again, analysis is similar to minimum wages and unionism.

Efficiency wages and unemployment

 (cont'd)- ALL wages would be above equilibrium level.
- Excess supply of labor.
- Penalty for shirking or quitting would not be a lower wage.
- Instead it would be
\qquad .

Critique of efficiency wages

There are \qquad expensive ways to discourage shirking and quitting.

- Workers could post a bond when hired.
- If workers quit or were caught shirking, they would lose the bond.
- If not, firm would return the bond with interest at retirement.
- Firm could pay delayed compensation.

Conclusions

- Efficiency wages are above-equilibrium wages designed to discourage shirking and quitting.
- They may be profitable in settings where close supervision is \qquad -.
- They may explain why some industries pay more than others: "dual labor markets."
- If all industries pay efficiency wages,
\qquad results.
- Yet efficiency wages are more expensive than bonding or delayed compensation.

UNEMPLOYMENT IN THE UNITED STATES

- What has been the unemployment rate?
- How does unemployment vary across demographic groups?
- How long are workers unemployed?

Why does education lower unemployment?

- Workers with higher education also tend to invest more in \qquad human capital.
- Less likely to be laid off by employers.
- Workers with higher education tend to switch jobs without being \qquad _.
- Perhaps have better information about jobs, and better contacts.

Why does education lower unemployment?

- Workers with higher education also tend to invest more in \qquad human capital.
- Less likely to be laid off by employers.
- Workers with higher education tend to switch jobs without being \qquad unemployed
- Perhaps have better information about jobs, and better contacts.

Why are unemployment rates higher for young workers?

Possible reasons:

- More likely to be affected by legal
\qquad —.
- Have higher \qquad as they search for the ideal job.
- Have less \qquad human capital (through on-the-job training), so more likely to be laid off by employers.

Why do unemployment rates sometimes differ by gender?

- Gender differences driven by \qquad of employment.
- Many men employed in manufacturing and construction, which tend to have greater cyclical unemployment.
- Many women employed in service sectors and government, which have less cyclical unemployment.

Why do unemployment rates differ by race?

- Higher for blacks than whites.
- Difference holds even after controlling for education.
- Wilson (1987) argues high unemployment is related to \qquad .
- Spatial isolation of blacks from jobs has led to declining employment and rising unemployment.

William Julius Wilson, The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy, Chicago: University of Chicago Press, 1987.

Duration of unemployment

- One should be concerned not only about the number of people unemployed, but how long they remain unemployed.
- The percent of unemployed who have been unemployed longer than 27 weeks rose sharply in the Great Recession.

Alternative measures of labor underutilization

$\mathrm{U}-1=$ persons unemployed 15 weeks or longer.
U-2 = job losers and persons who completed temporary jobs.
U-3 = unemployed (looked for work in last 4 weeks).
$\mathrm{U}-4=\mathrm{U}-3+$ discouraged workers (looked for work in last year, but not looking now because believe not jobs available).
$\mathrm{U}-5=\mathrm{U}-4+$ all other persons marginally attached to the labor force (looked for work in last year).
$\mathrm{U}-6=\mathrm{U}-5+$ working part time for economic reasons.

Conclusions

- U.S. unemployment rate has fluctuated over time, reaching a peak of \qquad \% during Great Depression.
- Unemployment rate is higher for less-educated workers, younger workers, and African-Americans.
- Unemployment rate is usually higher in construction and manufacturing than most service industries.
- Average duration of unemployment during the Great Recession.
- Over the business cycle, unemployment rate moves inversely with \qquad -.

TYPES OF UNEMPLOYMENT

- Why is there unemployment?

Types of unemployment

1. \qquad unemployment
2. \qquad unemployment
3. \qquad unemployment
4. \qquad unemployment

1. Frictional unemployment

- Normal \qquad of workers and firms.
- At any point in time, some employers are expanding and some are shrinking.
- New workers enter labor market after finishing school.
- Other workers re-enter labor market after not working.

Policy issues for frictional unemployment

- Frictional unemployment may be inevitable as markets adjust to new conditions.
- It takes time for workers and employers to find a good match.
- Not a big problem for policy.
- However, government might speed matching process through job banks and employment agencies.

2. Seasonal unemployment

- Seasonal layoffs occur in garment industry, auto manufacturing, agriculture, and construction.
- Temporary and \qquad .
- Not a big problem for policy.

Policy issues for structural unemployment

- Structural unemployment is likely to last a long time, unless workers get retrained quickly.
- Old human capital is no longer useful.
- Who will retrain the workers? Employers? Government?

Effect of decrease in demand for labor

- One would expect that employment and wages would fall.
- In fact something else happens.

3. Structural unemployment

- Whole sectors and occupations are growing, while others are shrinking.
- Suppose workers who are available for work do not have the right skills for the jobs available.
- \qquad creates so-called structural unemployment.

4. Cyclical unemployment

- Even if workers have the right skills, the number of available workers may not match the number of available jobs due to the
\qquad -
- During a recession, aggregate demand for final goods decreases.
- Derived demand for labor decreases.

What actually happens

- Employers react by (1) reducing hiring, and (2) laying off workers.
- Hardly any change in wages-they seem to be" \qquad ."
- Adjustment is only in employment.

Why are wages sticky?

- Union wages and legal minimum wages.
- But these affect few workers.
- Other economic explanations
- Intertemporal substitution hypothesis.
- Sectoral shifts hypothesis.
- Efficiency wages.
- Implicit contracts

Unemployment-vacancies curve* and cyclical unemployment

- In a recession, unemployment increases and job openings decrease.
- In a boom, unemployment decreases and job vacancies increase.
- Move \qquad U-V curve over business cycle.

Also called "Beveridge curve," after William Henry Beveridge, British
economist, though he never drew the curve.

Conclusions

- \qquad unemployment is caused by normal turnover of workers and firms.
- \qquad unemployment is
temporary and predictable.
- \qquad unemployment is caused by mismatch of worker skills to jobs, or insufficient work incentives.
- \qquad unemployment is caused by recessions.

UNEMPLOYMENT DYNAMICS

- How can we describe workers' movements between employment, unemployment, and out-of-the-labor force?

States and transitions

- Most unemployed workers eventually find jobs or leave the labor market.
- In fact, workers are constantly moving between states of
- employment
- unemployment
- out of the labor force.
- This suggests an approach to understanding frictional unemployment.

States and transitions (cont'd)

Employed (E)
Unemployed
(U)

Out of labor force (O)

Markov models

- Markov models assume that people (or things) are in various states at any point in time.
- However they move between states with certain constant probabilities.
- The steady state of a Markov model occurs when the fraction of people in each state is constant.

Simplified model

- Suppose no one leaves or enters labor force.

People just move between \qquad and \qquad -

- Let
- $P_{E U}=$ fraction of employed who become unemployed.
- $P_{\mathrm{UE}}=$ fraction of unemployed who are hired.

Note: each row must sum to \qquad , because everyone goes somewhere.

Steady state unemployment rate

- In steady state, flows must balance: number hired = number who become unemployed: $E P_{E U}=U P_{U E}$.
- Then $E P_{E U}+U P_{E U}=U P_{U E}+U P_{E U}$. $(E+U) P_{E U}=U\left(P_{U E}+P_{E U}\right)$.
- Then steady-state \qquad rate
$=U /(E+U)$
$=P_{E U} /\left(P_{U E}+P_{E U}\right)$.

Numerical example

- Suppose we are given transition probabilities
- fraction of employed who become unemployed (that is, probability of being laid off or leaving a job for unemployment) = $P_{E U}=2 \%=0.02$.
- fraction of unemployed who are hired (that is, probability of finding a job while unemployed) = $P_{U E}=30 \%=0.30$.
- What is the steady-state unemployment rate?

Numerical example (cont'd)

To Employed Unemployed

From Employed

Unemployed

Steady-state unemployment rate $=0.02 /(0.30+0.02)=$ \qquad \% .

But this model is too simple. In reality, some people leave and enter the labor force.

Transitions in and out of labor force

Now consider more transitions. Let

- $P_{\text {EO }}=$ fraction of employed who leave labor force.
- $P_{\text {uo }}=$ fraction of unemployed who leave labor force.
- $P_{\text {ou }}=$ fraction of OLF who begin looking for work.
- $P_{\text {OE }}=$ fraction of OLF who get jobs immediately.

3×3 Markov transition matrix

To
Employed Unemployed Out of LF

	Employed
From	Unemployed
	Out of LF

P_{Eu} P_{EO}
P_{ue}
Puu
Puo
$\mathrm{P}_{\text {Oe }} \quad \mathrm{P}_{\text {OU }}$
P_{oo}

Note: each row must sum to \qquad , because everyone goes somewhere.

In steady state, flows must balance

- Number entering employment = number \qquad employment:
(1) $O P_{O E}+U P_{U E}=E\left(P_{E O}+P_{E U}\right)$.
- Number entering unemployment = number \qquad unemployment:
(2) $E P_{E U}+O P_{\mathrm{OU}}=U\left(P_{U E}+P_{U O}\right)$.
- Number entering OLF = number OLF:
(3) $E P_{E O}+U \overline{P_{U O}=O}\left(P_{O E}+P_{O U}\right)$.

Steady state unemployment rate

- If transition probabilities (P..) are constant, tedious algebra shows that $(E / U)=$

$$
=\frac{\left(P_{U E} P_{O E}+P_{U O} P_{O E}+P_{U E} P_{O U}\right)}{\left(P_{E O} P_{O U}+P_{E U} P_{O U}+P_{E U} P_{O E}\right)}
$$

- Now unemployment rate $=\mathrm{U} /(\mathrm{E}+\mathrm{U})$

$$
=\left(\frac{E+U}{U}\right)^{-1}=
$$

Steady state unemployment rate

- If transition probabilities (P..) are constant, tedious algebra shows that $(E / U)=$

$$
=\frac{\left(P_{U E} P_{O E}+P_{U O} P_{O E}+P_{U E} P_{O U}\right)}{\left(P_{E O} P_{O U}+P_{E U} P_{O U}+P_{E U} P_{O E}\right)}
$$

- Now unemployment rate $=\mathrm{U} /(\mathrm{E}+\mathrm{U})$

$$
=\left(\frac{E+U}{U}\right)^{-1}=\left(\frac{E}{U}+\mathbf{1}\right)^{-1}
$$

Transition matrix: numerical example

	To	
Employed	Unemployed	Out of LF
0.95	0.02	0.03
0.50	0.40	0.10
0.05	0.03	0.92

Using the formula, steady-state $(E / U)=$ \qquad .
So unemployment rate $=$ \qquad \%.

Conclusions

- One way to describe changes in workers' employment status is with a Markov
\qquad matrix.
- In this framework, the probability of changing from, say, employment to unemployment is
\qquad —.
- We can compute \qquad values of employment and unemployment-that is, the values when inflows exactly equal outflows.

SEARCHING FOR A JOB

- How do unemployed workers decide how long to search and when to accept a job offer?

Frictional unemployment

- Includes
- Workers laid off from shrinking firms.
- Workers entering or re-entering labor market.
- These workers do not find jobs immediately even if jobs are available.
- Must \qquad for a good match.

Wage offer distribution

- Suppose employers are willing to pay a variety of different wages.
- Employers' potential wage offers form a distribution.
- Worker's job search task is to sample from distribution.

Reservation wage

- Minimal acceptable wage is called "reservation wage," or sometimes "asking wage."

The worker's problem

- Assume worker knows distribution of potential wage offers.
- But some effort is required to get an actual job offer.
- Should worker simply get 20 offers and pick best?
- It turns out that optimal strategy is
(1) Set a minimum acceptable wage.
(2) Stop search when job offer above it is receivedthat is, accept the wage offer.

How does a worker choose a reservation wage?

- Worker considers the tradeoff.
- High reservation wage means, on average, long search but better wage in the end.
- So worker compares marginal benefit and marginal cost of continuing to search.

Marginal benefit of further search

- Thus, marginal benefit of further search depends \qquad on the wage in hand.
- It also depends
\qquad on
worker's discount rate, since higher wages will be received in future.

Benefits of further search

- Benefit of further search depends on the wage offer in hand.
- If the wage offer in hand is high, unlikely that further search will bring a higher wage offer.

Costs of further search

- Job search is expensive.
- Out-of-pocket-costs: transportation, printing resumes, etc.
- Opportunity cost of worker's time.
- But opportunity cost of worker's time per hour = \qquad _.

Optimal reservation wage

- Where marginal benefit equals marginal cost.
- At that point, expected net benefit of further search $=$ \qquad .

Time to a new job

- Reservation wage determines average length of time to find a new job.
- The higher the reservation wage, the
\qquad the average time to a new job.
- But actual time to new job is always random.

Effects of unemployment

insurance (UI)

- UI benefits pay a laid-off worker (a fairly small amount of) money while searching for a new job.
- UI benefits lower the marginal cost of search and thus \qquad the reservation wage.
- This results in \qquad spell of
unemployment, and \qquad wage ultimately obtained.

Effect of searching while employed

- Lowers cost of search, so reservation wage.
- Note that, everything else equal, employed worker's reservation wage \geq wage currently paid.

Shifts in marginal cost

Marginal cost falls if worker has another source of income while searching. Examples:

- unemployment insurance benefits.
- already employed and can work while searching.

Effects of unemployment insurance (UI) (cont'd)

- However, UI benefits eventually run out (usually after 26 weeks).
- This
worker's reservation wage and speeds process of finding a job.

Effect of liquidity constraints

- Suppose a worker has little savings and no access to borrowing.
- Raises cost of search, so
reservation wage.

Conclusions

- Frictional unemployment consists of workers searching for available jobs.
- Optimal strategy: set a " \qquad
- Reservation wage is where $\mathrm{MC}=\mathrm{MB}$, or net benefit of further search is zero.
- UI benefits or searching while employed
___ the reservation wage.
- Liquidity constraints the reservation wage.

THEORIES OF CYCLICAL UNEMPLOYMENT

- In recessions, employment falls sharply but the real wage hardly moves.
- Why?

The basic facts

- Over the business cycle, employment moves a lot, but real wages hardly move.
- Why are wages so "sticky"?
- Hard to explain with simple shifts in labor demand, especially if supply is inelastic.

Minimum wages and unions

- Legal minimum wages and union wage contracts would prevent wages from falling in a recession.
- But they affect only a small minority of workers:
union: about 10\%*
min. wage: $1.3 \%^{* *}$.

Theories of cyclical unemployment

1. Intertemporal substitution hypothesis
2. Sectoral shifts hypothesis
3. Efficiency wages hypothesis
4. Implicit contracts hypothesis

Definitions

- Procyclical = \qquad correlated with changes in GDP.
- Employment, investment spending, and tax revenue are all procyclical.
- Countercyclical = \qquad correlated with changes in GDP.
- Unemployment is countercyclical.

More definitions

- \qquad unemployment = worker chooses not to work, even though jobs are available at market wage.
- \qquad unemployment = worker wants to work at market wage, but jobs are not available.

1. Intertemporal substitution hypothesis

- Argues that short-run labor supply is extremely elastic (flat).
- Small procyclical changes in the real wage are sufficient to cause large changes in labor supply.

Assessing the intertemporal substitution hypothesis

- Real wages are in fact slightly \qquad , especially in recent decades.*
- Data show that short-run labor supply is indeed
\qquad elastic than long-run labor supply, but not enough to explain changes in employment over the business cycle.
- Hypothesis implies that cyclical unemployment is
\qquad . Realistic?
*Abraham, K. G. and J. C. Haltiwanger (1995). "Real wages and the business cycle." Journal of Economic Literature, vol. 33, no. 3, pp. 1215-1264.

2. Sectoral shifts hypothesis

- Shocks to the economy (e.g., sudden changes in oil prices, development of the internet) cause some sectors to grow and others to shrink.
- But some workers laid off in shrinking sectors (e.g., manufacturing) do \qquad have skills to take jobs in growing sectors (e.g., information technology).
- So \qquad unemployment rises until workers are retrained and economy adjusts.

3. Efficiency wage hypothesis

- Wages are set above equilibrium level to discourage shirking.
- If all firms do this, result is involuntary
- Why does this deter shirking?

C. Shapiro and J.E. Stiglitz, "Equilibrium Unemployment as a Worker Discipline Device," Am. Econ. Rev., Vol 74 (June 1984), pp. 433-444.

How efficiency wages deter shirking

- Workers who are found shirking are fired.
- If there is unemployment, then fired workers must wait awhile before finding a new job.
- If unemployment is high, then fired workers must wait a long time.
- Cost to workers of being fired thus depends
\qquad on both the unemployment
rate and the foregone (market) wage.
- Workers will not shirk if cost is sufficiently high.

No-shirking labor supply curve

- No-shirking labor supply curve is mirror image of "no-shirking curve" on previous slide.
- No-shirking labor supply curve lies \qquad of usual supply curve, because some unemployment is required to prevent shirking.

Effect of changes in demand

- Suppose labor demand shifts left, as in a recession.
- Wage falls slightly, but employment falls even
\qquad —.
- Wages appear "sticky."
- Cyclical unemployment is \qquad —.

Shape of no-shirking labor supply

- If unemployment is high, then even a
\qquad discourage shirking.
- If unemployment is low, a \qquad wage is necessary to discourage shirking.

Tradeoff between unemployment and wage

At high wages, noshirking labor supply approaches usual labor supply curve.

- At low wages, it slopes
\qquad even
if usual labor supply is perfectly inelastic (vertical).

Assessing the efficiency wage hypothesis

- Studies find
relation between wage and unemployment ("wage curve") across regions within many countries.
- May reflect "no shirking curve."
D.G. Blanchflower and A.J. Oswald, The Wage Curve, UNemployment Cambridge, MA: MIT Press, 1994. Also D. Card, "The Wage
Curve: A Review," J. Econ. Lit., Vol 33 (June 1995), pp. 285-99.

4. Implicit contracts hypothesis

- Workers care about more than just the level of wages.
- They care about risks of wage
\qquad and unemployment over time.
- Unions negotiate explicit contracts and nonunion workers negotiate implicit (unwritten) contracts to address these risks.

Implicit contracts hypothesis (cont'd)

- Under plausible assumptions about worker's utility, it can be shown that workers prefer to have \qquad wage and
business cycle.
- Assuming workers are more risk-averse than their employers, such a contract will be optimal.
- In effect, firms "insure" their workers against wage fluctuations-but not against employment fluctuations.

Assessing the implicit contracts hypothesis

- The model predicts "excessively" high unemployment during slumps but also "excessively" \qquad unemployment during booms.
- However, data show that quits rise during booms, which amounts to \qquad the contract when times are good.
- Are long-term contracts really viable?

Conclusions

- Over business cycle, employment moves a lot, but real wages hardly move. Why?

1. \qquad substitution hypothesis: voluntary response by workers to procyclical real wage.
2. \qquad shifts hypothesis: shocks to economy raise structural unemployment.
3. \qquad wage hypothesis: tradeoff between wages and unemployment to deter shirking.
4. $\overline{\text { fluctuations in employment to fluctuations in wages. }}$

UNEMPLOYMENT INSURANCE IN THE UNITED STATES

- How does the unemployment insurance system work?
- What problems does it have?

Unemployment insurance

- Most high-income countries have systems of unemployment insurance (UI).
- In U.S., each \qquad manages its own system.
- Rules vary by state, within broad federal guidelines.

How much do they receive?

- Benefits typically depend on previous wages.
- But there is a maximum and a minimum benefit.
- Benefits normally last for a maximum of
\qquad weeks.

How much do they receive? (cont'd)

- Benefit formula is complicated.
- Typically about 50% of prior wages.
- In lowa, formula adjusted upward for number of dependents.

Job search requirements

- To receive benefits, must be available for work.
- Recipient required actively to \qquad for a job, unless on temporary layoff or in a training program.
- For example, in lowa, must contact \qquad employers per week.
- Must accept any " \qquad " job offer, defined based on prior wages and duration of employment.

Why all the job search requirements?

- In theory, UI should \qquad incentives for job search.
- This is an example of the principle of
\qquad , whereby
insurance causes people to take less care to avoid the insured event-in this case, to exert less effort to find a job.
- Theory predicts that UI would tend to prolong unemployment.

Evidence of incentive effects on job search by workers

- Benefits vary across states, and sometimes over time, so one can potentially measure the effects of changes in UI benefit levels on job search.
- Data show a \qquad in job-finding when UI benefits end.
- A cash payment for finding a job tends to
\qquad rate of job-finding.
- Studies show that an increase in benefit levels tends to increase duration of receiving benefits.

Evidence of incentive effects on job search by workers (con't)

- But wait! UI benefits can end two ways: find a job or stop looking.
- A recent paper found that extension of UI benefits during Great Recession delayed "stop looking" but had effect on "find a job."

Henry S. Farber and Robert G. Valletta, "Do Extended Unemployment Benefits Lengthen Unemployment Spells? Evidence from Recent Cycles in the U.S. Labor Market," Princeton University Industrial Relations Section Working Paper 573, April 2013.

Who pays for unemployment insurance?

- Ul is financed by state and federal payroll taxes on each employee's earnings.
- Paid by employers only.
- Constant tax rate up to a maximum, called "wage base," which varies by state.

Imperfect experience rating

- Each state has minimum and maximum tax rates.
- Even in range where the tax rate increases, it does not increase fast enough to cover increased UI cost of employer's own layoffs.

Previous layoff experience

Evidence of incentive effects on layoffs by firms

- If employers were perfectly experience-rated, they would pay \qquad the UI benefit costs of their own layoffs.
- Studies estimate that layoffs and unemployment would \qquad substantially if employers were perfectly experience-rated.

Macroeconomic effects of UI

- Ul is an example of an "automatic stabilizer," a government program that
- increases spending in \qquad
- decreases spending in \qquad -
- Helps stabilize aggregate demand and thereby mitigate recessions and booms.

Conclusions

- Unemployment insurance is a state-run system that pays laid-off workers benefits while they search for a job.
- However, it may \qquad workers' incentives for job-finding.
- It is financed by payroll taxes on employers.
- However, imperfect decreases employers' incentives for avoiding layoffs.

THE PHILLIPS CURVE

- Is there a tradeoff between inflation and unemployment?

The "Phillips curve"

- A.W. Phillips (1958) claimed that inflation and unemployment were negatively related in British data.

A. W. Phillips, "The Relation between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861-1957," Economica, New Series, Vol. 25, No. 100 (Nov. 1958), pp. 283-299

A tradeoff?

- Phillips's article led many economists to believe there was a long-run tradeoff between inflation and unemployment.
- Higher inflation \Longleftrightarrow lower unemployment.
- Lower inflation \Longleftrightarrow higher unemployment.

> unemployment rate

Simple Phillips curve does not fit the facts

- It is hard to see any overall downward-sloping curve in these (U.S.) data!
- But taking a few adjacent years sometimes gives a downward sloping curve.
- Conclude: no long-run relationship, but maybe (?) a series of short-run relationships.

Edmund Phelps and Milton Friedman criticize the Phillips curve

- Argued that Phillips curve did not make theoretical sense.
- Argued that if inflation persists, people will eventually get used to it.
- Inflation can disturb the labor market only
\qquad -.

Milton Friedman, "The Role of Monetary Policy," American Economic Review, vol. 58 (March 1968), pp. 1-17.
Edmund S. Phelps, "Money-Wage Dynamics and Labor Market Equilibrium," Journal of Political Economy, vol. 76 (1968), pp. 678-711.

The Phelps-Friedman critique of the Phillips curve

- Suggested that there was a "natural" unemployment rate
- If unemployment < natural rate, inflation increases.
- If unemployment > natural rate, inflation decreases.

Phelps and Friedman: the long-run relationship is vertical

- Said downwardsloping relationship is
- Unemployment will always return to its natural rate, whatever the inflation rate.
- Why?

The reasoning behind the Phelps and Friedman critique

- Consider labor market.
- Quantity = number of workers employed.
- Price = real wage = wage divided by the price level.
- Thus real wage = purchasing power of wages.

Phelps and Friedman: effects of inflation on real wage

- So if the wage does not change, then a 5\% increase in the price level would lower the real wage by about \qquad \%.
- A 10% increase in the price level would lower the real wage by about \qquad \%.
- What would happen if the price level increased suddenly, before unions or Congress could react?

Phelps and Friedman: short-run effects of unexpected inflation

- Suppose inflation rate suddenly rose from 2\% to 12%. This would:
- lower the real wage by about 10%.
- reduce U temporarily below the natural rate.
- Create a temporarily "tight" labor market.

Phelps and Friedman: long-run effects of inflation

- But if inflation persisted, firms, workers, unions, and Congress would begin to \qquad it.
- Wages would catch up with inflation.
- U would return to the natural rate.

Phelps and Friedman: the long-run Phillips curve is vertical

- There is a short-run tradeoff, but no longrun tradeoff.
- Unemployment returns to its natural rate, as everyone gets used to the new inflation rate.

Phelps and Friedman: effects of disinflation on real wage

- Similarly, if the wage does not change, then a 5% decrease in the price level would raise the real wage by about \qquad \%.
- A 10% decrease in the price level would raise the real wage by about \qquad \%.
- What would happen if the inflation rate decreased suddenly, before unions or Congress could react?

Phelps and Friedman: short-run effects of unexpected disinflation

- Suppose inflation rate suddenly fell from 12% to 7%. This would:
- raise the real wage by about 5\%.
- increase U temporarily above the natural rate.
- Create a temporarily "slack" labor market.

Phelps and Friedman: the long-run Phillips curve is vertical

- There is a short-run tradeoff, but no longrun tradeoff.
- Unemployment returns to its natural rate, as everyone gets used to the new inflation rate.

"Tight" "Slack" $\mathrm{U}=$ Unemployment rate

Is the natural rate of unemployment constant?

- In recent years, there have been large changes in unemployment without changes in inflation.

	Natural rate

$\mathrm{U}=$ Unemployment rate

- This suggests the natural rate of unemployment has changed.

Why might the natural rate of unemployment change?

- Markov models show that steady-state unemployment rate depends on rates of job-finding and job-leaving.
- These rates differ across demographic groups, industries, and occupations.
- So, for example, aging of baby-boomer generation might decrease rate of job-leaving and lower steady-state unemployment. and

Conclusions

- Most macroeconomists now agree with Phelps and Friedman.
- In short run, higher inflation brings lower unemployment (the " \qquad curve").
- In long run, there is no tradeoff: unemployment always returns to its
\qquad whatever the inflation rate.

[^0]: Lawrence H. Summers, "Some Simple Economics of Mandate
 Benefits," American Economic Review, Vol. 79 (May 1989), pp. 177-183.

[^1]: S.H. Slichter, Union Policies and Industrial Management, Washington: Brookings

