

EXAMINATION 1 VERSION A
“Mathematical Tools”
September 5, 2023

INSTRUCTIONS: This exam is closed-book, closed-notes. Calculators, mobile phones, and wireless devices are NOT permitted. Point values for each question are noted in brackets.

I. MULTIPLE CHOICE: Circle the one best answer to each question. Use margins for scratch work. [2 pts each—30 pts total]

(1) Suppose the derivative of the function $y = f(x)$ equals -2 at a particular value of x . At that point, the graph of the function is

- a. upward-sloping.
- b. downward-sloping.
- c. vertical.
- d. horizontal.
- e. cannot be determined from the information given.

(2) Suppose $y = 5 + (2/x)$. Then the derivative of y with respect to x is given by the formula

- a. $dy/dx = -2$.
- b. $dy/dx = 2/x^2$.
- c. $dy/dx = -2/x^2$.
- d. $dy/dx = 5x$.
- e. none of the above.

(3) Suppose $y = -7x^2 + 5x + 3$. Then the derivative of y with respect to x is

- a. $dy/dx = -14$.
- b. $dy/dx = 5$.
- c. $dy/dx = 1$.
- d. $dy/dx = -14x + 5$.
- e. $dy/dx = -7x + 3$.
- f. $dy/dx = -14x^2 + 5x + 3$.

(4) Suppose $y = (3+x)^2$. Then the derivative of y with respect to x is given by

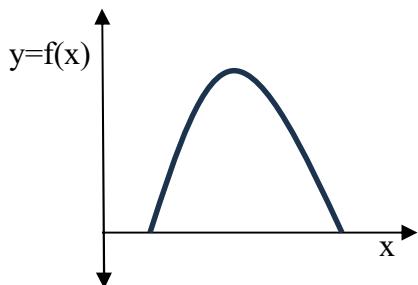
- a. $dy/dx = 3$.
- b. $dy/dx = 3x^2$.
- c. $dy/dx = 2(3+x)^2$.
- d. $dy/dx = 2(3+x)$.
- e. none of the above.

(5) Suppose $y = x^{3/2}$. Then the derivative of y with respect to x is given by

- a. $dy/dx = (3/2)x^{1/2}$.
- b. $dy/dx = x^{-1/2}/2$.
- c. $dy/dx = (1/2)x$.
- d. $dy/dx = (1/2)x^{-1/2}$.
- e. none of the above.

(6) Suppose $y = 5(2x+4)^3$. Then the derivative of y with respect to x is

- a. $dy/dx = 5(2x+4)^2$.
- b. $dy/dx = 15(2x+4)^2$.
- c. $dy/dx = 30(2x+4)^2$.
- d. $dy/dx = 2$.
- e. $dy/dx = 15(2x+4)$.


(7) Which of the following functions has constant slope (or derivative)?

- a. $y = 5 + 2x + (2/4)x^4$.
- b. $y = 5x^{-4}$.
- c. $y = \ln(4x)$.
- d. $y = \exp(2x)$.
- e. $y = 5 + 4x$.
- f. $y = 5 + (2/x)$.

(8) If x increases by 2 percent, then $\ln(x)$ increases by about

- a. $\ln(2)$, or about 0.693 units.
- b. 0.02 percent.
- c. 0.02 units.
- d. 2 percent.
- e. 2 units.

The next question refers to the following graph of $y = f(x)$.

(9) In this graph, the derivative of y with respect to x (that is, df/dx) equals zero at

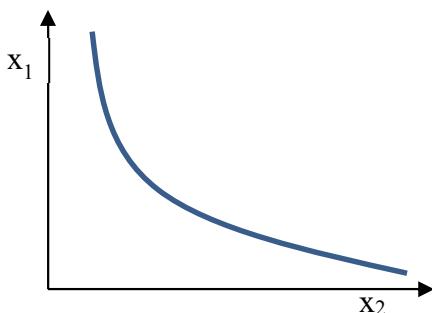
- a. no point on the graph.
- b. one point on the graph.
- c. two points on the graph.
- d. three points on the graph.
- e. four points on the graph.
- f. more than four points on the graph.

(10) Suppose we have a function $y = f(x)$, which is continuously differentiable. The first-order necessary condition (FONC) for a maximum is

- a. $f(x) = 0$.
- b. $df/dx = 0$.
- c. $f(x) = 1$.
- d. $df/dx = 1$
- e. df/dx is as large as possible.

(11) If y is proportional to x , (that is, if $y = ax$, where a is an unknown constant) then the elasticity of y with respect to x equals

- a. zero.
- b. one-half.
- c. one.
- d. x .
- e. a .


(12) Consider the following functions. Which has constant elasticity?

- a. $y = 5 + 2x + (2/4)x^4$.
- b. $y = 5x^{-4}$.
- c. $y = \ln(4x)$.
- d. $y = \exp(2x)$.
- e. $y = 5 + 4x$.
- f. $y = 5 + (2/x)$.

(13) A straight line has constant

- a. slope.
- b. elasticity.
- c. It has both constant slope and constant elasticity.
- d. It has neither constant slope nor constant elasticity.

The next two questions refer to the following graph of a level curve, or contour, of the function $y = f(x_1, x_2)$.

(14) By definition, all points along the curve in this graph have identical values of

- a. x_1 .
- b. x_2 .
- c. y .
- d. the marginal rate of substitution.
- e. all of the above.
- f. none of the above.

(15) Along this level curve, as we move down and to the right, the marginal rate of substitution of x_2 for x_1 (that is, the |slope| of the level curve with x_1 on the vertical axis and x_2 on the horizontal axis) is

- a. increasing.
- b. diminishing.
- c. infinite.
- d. constant and equal to zero.
- e. constant and equal to one.

II. SHORT ANSWER: Please write your answers in the boxes on this question sheet. Use margins for scratch work.

(1) [4 pts] Suppose the derivative of the function $y = f(x)$ equals 5 at a particular value of x . Moreover, the elasticity of y with respect to x equals 1.5. Further suppose that x increases by 2 units. [Hint: Some of this information is extraneous and not needed to answer this question.]

a. Will y increase or decrease?

b. By about how much?

units

(2) [4 pts] Consider the function $y = f(x_1, x_2)$. Suppose at a particular point, $\partial y / \partial x_1 = 2.5$, and $\partial y / \partial x_2 = 3.5$, and that the partial elasticities are $\varepsilon_1 = 1$ and $\varepsilon_2 = 3$. Further suppose that x_1 increases by 4 percent and simultaneously x_2 increases by 2 percent. [Hint: Some of this information is extraneous and not needed to answer this question.]

a. Will y increase or decrease?

b. By about how much?

percent

(3) [4 pts] Consumer spending on food equals price times quantity. Suppose the price of food increases by 5 percent and quantity decreases by 1 percent.

a. Will spending on food *increase* or *decrease*?

b. By about how much?

percent

(4) [4 pts] Income per capita for a country equals total income divided by total population.

Suppose total income increases by 6 percent and total population increases by 4 percent.

a. Will income per capita *increase* or *decrease*?

b. By about how much?

percent

(5) [8 pts] Consider the function $y = f(x_1, x_2)$. Suppose at a particular point, $\partial y / \partial x_1 = 4$, and $\partial y / \partial x_2 = 3$. First, suppose that x_1 increases by 9 units but x_2 does not change.

a. Will y *increase* or *decrease*?

b. By about how much?

units

Now suppose that x_1 increases by 9 units but we want y to remain constant. To keep y constant, we must change the value of x_2 .

c. Must x_2 *increase* or *decrease*?

d. By about how much?

units

(6) [4 pts] Consider the function $y = f(x_1, x_2)$. Suppose at a particular point, $\partial y / \partial x_1 = 3$, and $\partial y / \partial x_2 = 2$. Now consider a graph of the level curve of this function, with x_1 on the vertical axis and x_2 on the horizontal axis.

a. Does the level curve of the function slope *up* or *down* at that point?

b. Give the slope of the level curve at this point.

III. PROBLEMS: Please write your answers in the boxes on this question sheet. Show your work and circle your final answers.

(1) [Optimization: 8 pts] Consider the function $y = f(x) = -2x^2 + 20x + 3$.

a. Find an expression (in terms of x) for the derivative of y with respect to x (dy/dx).

b. Compute the value x^* that maximizes this function.

c. For what range of values of x does this function slope up? For what range of values does it slope down?

d. Find the maximum value, y^* , of the function itself.

(2) [Partial elasticities: 6 pts] Suppose $y = (x_1 + 5)^2 x_2^4$.

a. Find an expression for ε_1 , the partial elasticity of y with respect to x_1 . The variable y should *not* appear in your answer. Simplify if possible.

b. Find an expression for ε_2 , the partial elasticity of y with respect to x_2 . The variable y should *not* appear in your answer. Simplify if possible.

(3) [MRS: 12 pts] Suppose $y = f(x_1, x_2) = -7x_1^{-1} - 5x_2^{-1}$. The arguments x_1 and x_2 are strictly positive.

a. Find an expression for the partial derivative of y with respect to x_1 .

b. Find an expression for the partial derivative of y with respect to x_2 .

c. Find an expression for the marginal rate of substitution of x_2 for x_1 (that is, the formula for the $|\text{slope}|$ of the level curves of y , with x_1 on the vertical axis and x_2 on the horizontal axis). Simplify if possible.

(4) [MRS: 12 pts] Suppose $y = f(x_1, x_2) = (x_1 + 4)^3 (x_2 + 2)$. The arguments x_1 and x_2 are nonnegative.

a. Find an expression for the partial derivative of y with respect to x_1 .

b. Find an expression for the partial derivative of y with respect to x_2 .

c. Find an expression for the marginal rate of substitution of x_2 for x_1 (that is, the formula for the $|\text{slope}|$ of the level curves of y , with x_1 on the vertical axis and x_2 on the horizontal axis). Simplify if possible.

IV. CRITICAL THINKING: [4 pts] Answer *one* question below (your choice). Circle the question you are answering. Justify your answer and show your work.

(1) Let the function $f(q)$ represent ABC Corporation's profit as a function of its output level q . Now $f(q)$ is itself the difference of two other functions $r(q)$ and $c(q)$, representing revenue and cost, both functions of q , so that $f(q) = r(q) - c(q)$. When $f(q)$ is maximized, what must be the relationship between the derivatives dr/dq and dc/dq ? Why? (Ignore the graph.)

(2) Suppose $U = f(I, P)$, where U = utility or well-being, P = pollution, and I = income. Further suppose $\partial U / \partial I$ is positive, but $\partial U / \partial P$ is negative. Do the level curves of $f(I, P)$ slope *up* or *down*? Justify your answer. Sketch a typical level curve.

[end of exam]