ECON 173 - Intermediate Microeconomic Analysis Drake University, Fall 2021 William M. Boal

EXAMINATION #3 ANSWER KEY "Firms and Competition"

Version A

I. Multiple choice

(1)c. (2)b. (3)d. (4)a. (5)d. (6)c. (7)a. (8)b. (9)b. (10)b. (11)b. (12)b. (13)d. (14)c. (15)c.

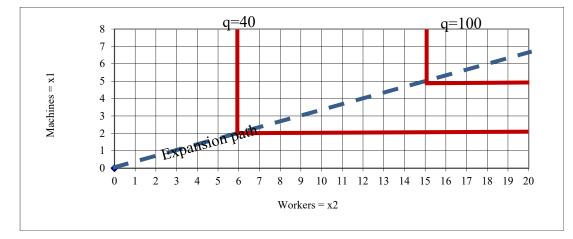
II. Short answer

(1)	a. 4%.	b. 3%.				
(2)	a. 0 thousand (because price is below shutdown price).					
	b. 11 thousand (using rule P=MC to find q).c. 8 thousand (using rule P=MC to find q).					
	d. 6 (because breakeven price = min(SATC)).					
	e. $2 (because shutdown price = min(SAVC)).$					
(3)	a. import.	b. 6 million poun	ds. c. increase.			
	d. \$14 millior	e. decrease.	f. \$8 million.			
	g. increase.	h. \$6 million.				

III. Problems

(1) [Production functions]

a. $MP_1 = 6 x_1^{-1/4}$. Yes, there are diminishing returns to input 1, because as x_1 increases (and x_2 is held constant), MP₁ decreases.


b.
$$MRSP = MP_2/MP_1 = \frac{(3/4)x_2^{-1/4}}{6x_1^{-1/4}} = \frac{1}{8} \left(\frac{x_1}{x_2}\right)^{1/4}$$
. Yes, this function does have

diminishing MRSP, because as x₁ decreases and x₂ increases, MRSP diminishes. c. Check returns to scale:

$$f(ax_1, ax_2) = 8 (ax_1)^{3/4} + (ax_2)^{3/4} = 8 a^{3/4} x_1^{3/4} + a^{3/4} x_2^{3/4} = a^{3/4} (8 x_1^{3/4} + x_2^{3/4}) = a^{3/4} q < aq, \text{ for all } a > 1.$$

Thus, multiplying all inputs by the same factor (a) causes output to increase by a smaller factor. So this production function has DECREASING returns to scale.

(2) [Fixed-proportions technology]
a.
$$x_1 = (x_2/3)$$
. b. $q = 20 x_1$. c. $q = (20/3) x_2$.
d. $q = \min\{20 x_1, (20/3) x_2\}$.
e.

(3) [Cost minimization]

a. Equation for isoquant: $60 = 4 x_1^{1/2} x_2^{1/2}$ or $15 = x_1^{1/2} x_2^{1/2}$ or $225 = x_1 x_2$. b. $MRSP = MP_2/MP_1 = \frac{2 x_1^{1/2} x_2^{-1/2}}{2 x_1^{-1/2} x_2^{1/2}} = x_1/x_2$.

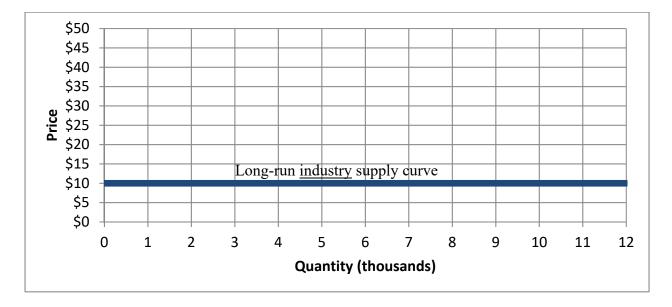
c. Set MRSP = 18/2 and solve jointly with $60 = 4 x_1^{1/2} x_2^{1/2}$, to get $x_1^*=45$ and $x_2^*=5$.

d. TC(60) = $45 \times \$2 + 5 \times \$18 = \$180$.

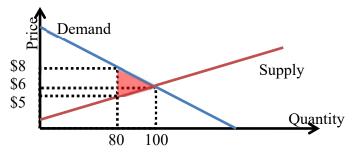
(4) [Long-run profit maximization and supply]

a. AC = TC/q = $0.01 q^2 - q + 35$.

Set 0 = dAC/dq = 0.02 q - 1 and solve to get $q_{ES} = 50$.

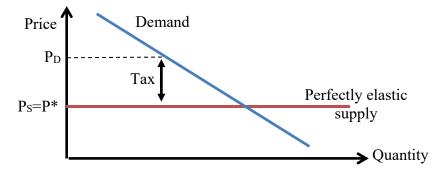

b. Breakeven price = minimum $AC = AC(q_{ES}) =$ \$10.

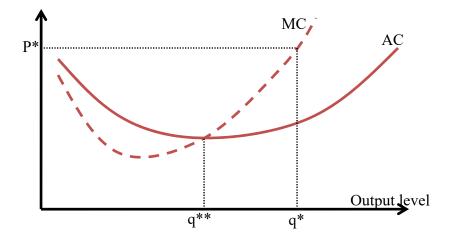
c. A supply curve shows how much will be produced for any given price. If P>minimum average cost, the profit-maximizing firm will choose an output level where P=MC(q), and if P<minimum average cost, it will produce nothing. So the <u>firm's</u> supply curve is given by the following equations.


If $P \ge \$10$, $P = MC(q) = dTC/dq = 0.03 q^2 - 2 q + 35$.

If $P \leq 10$, q=0 (firm shuts down).

d. The long-run industry supply curve is a horizontal line at minimum AC:


(5) [Welfare effects of tax or subsidy] a. Set $P_D = P_S$ and solve to get $P^* = \$6$ and $Q^* = 100$. b. With an excise tax of \$3, $P_D = P_S + 3$. Substituting and solving gives Q = \$0. It is useful to also compute the new total price paid by buyers, including the tax ($P_D = \$8$), and the new net price received by sellers, excluding the tax ($P_S = \$5$).


c. Consumer surplus decreases by \$180, the area of the trapezoid between \$6 and \$8. d. Producer surplus decreases by \$90, the area of the trapezoid between \$6 and \$5. e. Although the government collects \$3×80=\$240 in tax revenue, this is less than the combined decreases of consumer and producer surplus. The loss to society as a whole (also called "deadweight loss" or "excess burden of the tax") is \$30.

IV. Critical thinking

(1) If supply is perfectly elastic (horizontal) then only buyers bear the burden of the tax. The tax inserts a wedge between demand and supply, but only the buyers' price (P_D) moves. The sellers' price (P_s) remains the same as before the tax.

(2) [The following answer uses a long-run framework, where there are no fixed costs. A similar answer in a short-run framework would be acceptable.] It is true that *per-unit profit* is maximized when the firm operates at the output level where average cost is lowest. However *total profit* is maximized when the firm operates at the output level where *market price equals marginal cost*, provided price is greater than minimum average cost. (If price is less than average cost, total profit is maximized when the output level is zero.) Thus, the total-profit-maximizing level of output depends on the market price. In general, the two output levels will be different, as shown in the graph below. Here, P* is the market price, q* is the output level that maximizes total profit, and q** is the output level where average cost is lowest.

Version **B**

I. Multiple choice

(1)d. (2)c.(3)b. (4)c. (5)b. (6)d. (7)b. (8)a. (9)a. (10)f.(11)d. (12)a. (13)b. (14)d. (15)e.

II. Short answer

	010 010 010					
(1)	a. 3%.	b. 4%.				
(2)	a. 7 thousand (using rule P=MC to find q).					
	b. 9 thousand (using rule P=MC to find q).					
	c. 0 thousand (because price is below shutdown price).					
	d. $\$7$ (because breakeven price = min(SATC)).					
	e. 4 (because shutdown price = min(SAVC)).					
(3)	a. export.		b. 6 million pounds.	c. decrease.		
	d. \$10 million	l.	e. increase.	f. \$16 million.		
	g. increase.		h. \$6 million.			

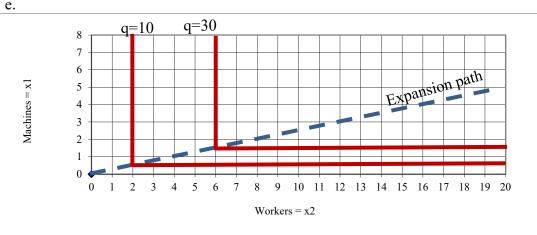
III. Problems

[Production functions] (1)

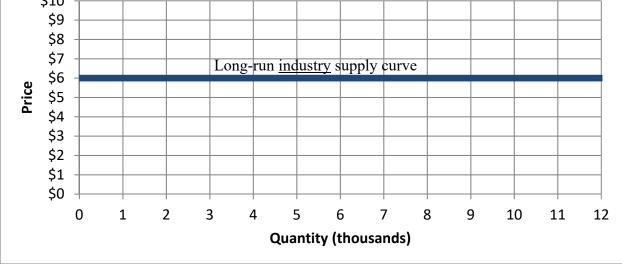
a. $MP_1 = 6 x_1^{-1/4} x_2^{3/4}$. Yes, there are diminishing returns to input 1, because as x_1 increases (and x_2 is held constant), MP₁ decreases.

b. $MRSP = MP_2/MP_1 = \frac{6 x_1^{3/4} x_2^{-1/4}}{6 x_1^{-1/4} x_2^{3/4}} = \frac{x_1}{x_2}$. Yes, this function does have diminishing

MRSP, because as x_1 decreases and x_2 increases, MRSP diminishes. c. Check returns to scale:

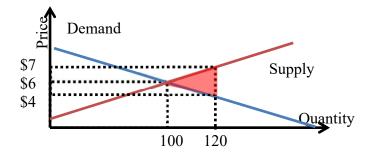

$$f(ax_1, ax_2) = 8 (ax_1)^{3/4} (ax_2)^{3/4} = 8 a^{3/4} x_1^{3/4} a^{3/4} x_2^{3/4} = a^{3/4} a^{3/4} (8 x_1^{3/4} x_2^{3/4}) = a^{3/2} q > aq, \text{ for all } a > 1.$$

Thus, multiplying all inputs by the same factor (a) causes output to increase by a larger factor. So this production function has INCREASING returns to scale.


[Fixed-proportions technology] a. $x_1 = (x_2/4)$. b. $q = 20 x_1$. c. $q = (20/4) x_2$. d. $q = \min\{20 x_1, (20/4) x_2\} = \min\{20 x_1, 5 x_2\}.$

e.

(2)


(3) [Cost minimization] a. Equation for isoquant: $30 = 5 x_1^{1/2} x_2^{1/2}$ or $6 = x_1^{1/2} x_2^{1/2}$ or $36 = x_1 x_2$. b. $MRSP = MP_2/MP_1 = \frac{(5/2) x_1^{1/2} x_2^{-1/2}}{(5/2) x_1^{-1/2} x_2^{1/2}} = x_1/x_2$. c. Set MRSP = 20/5 and solve jointly with $30 = 5 x_1^{1/2} x_2^{1/2}$, to get $x_1^*=12$ and $x_2 = 3.$ d. TC(30) = $12 \times \$5 + 3 \times \$20 = \$120$. (4) [Long-run profit maximization and supply] a. $AC = TC/q = 0.01 q^2 - 0.8 q + 22$. Set 0 = dAC/dq = 0.02 q - 0.8 and solve to get $q_{ES} = 40$. b. Breakeven price = minimum $AC = AC(q_{ES}) =$ \$6. c. A supply curve shows how much will be produced for any given price. If P>minimum average cost, the profit-maximizing firm will choose an output level where P=MC(q), and if P<minimum average cost, it will produce nothing. So the firm's supply curve is given by the following equations. If $P \ge \$6$, $P = MC(q) = dTC/dq = 0.03 q^2 - 1.6 q + 22$. If P < \$6, q=0 (firm shuts down). d. The long-run industry supply curve is a horizontal line at minimum AC: \$10 \$9

(5) [Welfare effects of tax or subsidy]

a. Set $P_D = P_S$ and solve to get $P^* = \$6$ and $Q^* = 100$.

b. With subsidy of \$3, $P_D + 3 = P_S$. Substituting and solving gives Q = 120. It is useful to also compute the new net price paid by buyers, excluding the subsidy ($P_D =$ \$4), and the new total price received by sellers, including the subsidy ($P_S =$ \$7).

c. Consumer surplus increases by \$220, the area of the trapezoid between \$6 and \$4. d. Producer surplus increases by \$110, the area of the trapezoid between \$6 and \$7. e. The government pays $3\times120=360$ in tax revenue, but this is less than the combined increases of consumer and producer surplus. The loss to society as a whole (also called "deadweight loss") is \$30.

IV. Critical thinking

(Same as Version A above.)

[end of answer key]