EXAMINATION #1 ANSWER KEY "Mathematical Tools"

Version A

I. Multiple choice

(1)c. (2)c.(4)e. (5)c.(8)c. (9)e. (3)d.(6)e. (7)a. (10)a.

(11)e (12)f. (13)b. (14)c. (15)a.

II. Short answer

(1) a. decrease b. 2 percent, using elasticity since change is given in percent.

(2) b. 3.4 units, using derivatives since changes are given in units. a. increase

b. 3 percent, using approximation rule for products. (3) a. increase

a. increase b. 2 percent, using approximation rule for ratios. (4)

a. increase b. 30 units c. decrease (5) d. 15 units.

b. $-5/2 = -2.5 = -\frac{\partial y/\partial x_2}{\partial y/\partial x_1}$. (6) a. down

III. Problems

a. dy/dx = -4x + 20. b. Set dy/dx=0 and solve to get $x^* = 5$. **(1)**

> c. The function slopes up if dy/dx = -4x + 20 > 0, which implies x<5. The function slopes down if dy/dx = -4x + 20 < 0, which implies x>5.

d. $y^* = f(x^*) = f(5) = 53$. a. $\varepsilon_1 = \frac{\partial y}{\partial x_1} \frac{x_1}{y} = \frac{2x_1}{x_1 - 3}$. b. $\varepsilon_2 = \frac{\partial y}{\partial x_2} \frac{x_2}{y} = 4$. (2)

b. $\frac{\partial y}{\partial x_2} = (x_1 - 2)^3 5(x_2 + 4)^4$ a. $\frac{\partial y}{\partial x_1} = 3(x_1 - 2)^2 (x_2 + 4)^5$ (3)

c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_4} = \frac{5(x_1-2)}{3(x_2+4)}$.

a. $\frac{\partial y}{\partial x_1} = 2 x_1^{-2} \text{ b.} \frac{\partial y}{\partial x_2} = 3 x_2^{-2}$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_3} = \frac{3 x_2^{-2}}{2 x_2^{-2}} = \frac{3}{2} \left(\frac{x_1}{x_2}\right)^2$. **(4)**

IV. Critical thinking

We are given the profit function $y = -3x^2 - 2x - 5$. To maximize this function, find the (1) derivative $\frac{dy}{dx} = -6x - 2$. For all non-negative values of x, this derivative is negative and the profit function slopes down. So profit is maximized at the smallest possible value of x, that is, $x^*=0$. At that value of output, profit = y = -5. A graph of the profit function is shown below.

Suppose income is on the vertical axis and pollution is on the horizontal axis. Then the slope of the level curves $=-\frac{\partial U/\partial P}{\partial U/\partial I}=-\frac{negative}{positive}=positive$. So the level curves of f(I,P) must slope UP. (Note that if income is on the horizontal axis and pollution is on the vertical axis, the level curves still slope up.) A graph of a typical level curve is shown below.

Version B

I. Multiple choice

(1)b. (2)e. (3)b.(4)c. (5)b. (6)e. (7)a. (8)b. (9)b. (10)c.

(11)c (12)d. (13)a. (14)d. (15)d.

II. Short answer

b. 6 units, using derivative since change is given in units. (1) a. increase

b. 13 percent, using elasticity since changes are given in percent. (2) a. increase

b. 2 percent, using approximation rule for products. (3) a. decrease

b. 3 percent, using approximation rule for ratios. **(4)** a. decrease

a. increase b. 18 units c. decrease d. 6 units. (5)

b. $-1/3 = -\frac{\partial y/\partial x_2}{\partial v/\partial x_3}$. (6) a. down

III. Problems

(1) a. dy/dx = 4x - 12. b. Set dy/dx=0 and solve to get $x^* = 3$.

> c. The function slopes up if dy/dx = 4x - 12 > 0, which implies x>3. The function slopes down if dy/dx = 4x - 12 < 0, which implies x<3.

d. $y^* = f(x^*) = f(3) = -13$.

a. $\varepsilon_1 = \frac{\partial y}{\partial x_1} \frac{x_1}{y} = 2$. b. $\varepsilon_2 = \frac{\partial y}{\partial x_2} \frac{x_2}{y} = \frac{3 x_2}{x_2 - 5}$. (2)

a. $\frac{\partial y}{\partial x_1} = x_1^{-0.5}$ b. $\frac{\partial y}{\partial x_2} = 2 x_2^{-0.5}$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{2 x_2^{-0.5}}{x_1^{-0.5}} = 2 \left(\frac{x_1}{x_2}\right)^{0.5}$.

a. $\frac{\partial y}{\partial x_1} = 3(x_1 + 4)^2 (x_2 - 1)^5$ b. $\frac{\partial y}{\partial x_2} = (x_1 + 4)^3$

(4) c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{(x_1+4)}{3(x_2-1)}$.

IV. Critical thinking

(Same as version A.)

[end of answer key]