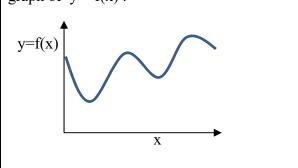
ECON 173 - Intermediate Microeconomic Analysis
Drake University, Fall 2019
William M. Boal

Signature:	
Printed name:	

EXAMINATION #1 VERSION A "Mathematical Tools" September 3, 2019

INSTRUCTIONS: This exam is closed-book, closed-notes. Calculators, mobile phones, and wireless devices are NOT permitted. Point values for each question are noted in brackets.

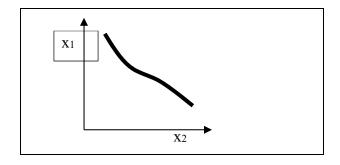

I. MULTIPLE CHOICE: Circle the one best answer to each question. Use margins for scratch work. [2 pts each—30 pts total]

- (1) Suppose the derivative of the function y = f(x) equals 3 at a particular value of x. At that point, the graph of the function is
- a. vertical.
- b. horizontal.
- c. upward-sloping.
- d. downward-sloping.
- e. cannot be determined from the information given.
- (2) Suppose y = 5 + (7/x). Then the derivative of y with respect to x is given by the formula
- a. dy/dx = 7.
- b. $dy/dx = 7/x^2$.
- c. $dy/dx = -7/x^2$.
- d. dy/dx = 12x.
- e. none of the above.
- (3) Suppose $y = 5x^2 + 2x + 7$. Then the derivative of y with respect to x is
- a. dy/dx = 10.
- b. dy/dx = 5.
- c. dy/dx = 5x + 2.
- d. dy/dx = 10x + 2.
- e. dy/dx = 5x + 7.
- f. $dy/dx = 5x^2 + 2x + 7$.

- (4) Suppose $y = (4x-5)^3$. Then the derivative of y with respect to x is given by
- a. dy/dx = 3.
- b. dy/dx = 4.
- c. dy/dx = 12x.
- d. $dy/dx = 3(4x-5)^2$.
- e. $dy/dx = 12(4x-5)^2$.
- (5) Suppose $y = x^{1/2}$. Then the derivative of y with respect to x is given by
- a. dy/dx = x/2.
- b. $dy/dx = (1/2) x^{1/2}$.
- c. $dy/dx = (1/2) x^{-1/2}$.
- d. $dy/dx = (-1/2) x^{-1/2}$
- e. none of the above.
- (6) Suppose $y = 2(5+4x)^3$. Then the derivative of y with respect to x is
- a. dy/dx = 10.
- b. dy/dx = 40.
- c. $dy/dx = (5+4x)^2$.
- d. $dy/dx = 6(5+4x)^2$
- e. $dy/dx = 24 (5+4x)^2$.

- (7) Which of the following functions has constant slope (or derivative)?
- a. y = 7 + 3 x.
- b. y = 7 + (5/x).
- c. $y = \ln(3x)$.
- d. $y = \exp(2x)$.
- e. $y = 7 + 5x + (2/3) x^3$.
- f. $y = 7 x^{-3}$.
- (8) If x increases by 3 percent, then ln(x) increases by about
- a. ln(3), or about 1.099 units.
- b. 0.03 percent.
- c. 0.03 units.
- d. 3 percent.
- e. 3 units.

The next question refers to the following graph of y = f(x).



- (9) In this graph, the derivative of y with respect to x (that is, df/dx) equals zero at
- a. no point on the graph.
- b. one point on the graph.
- c. two points on the graph.
- d. three points on the graph.
- e. four points on the graph.
- f. more than four points on the graph.

- (10) Suppose we wish to minimize the function y = f(x), which is continuously differentiable. Assuming there are no restrictions on the possible values of x, the minimizing value x^* must satisfy
- a. df/dx = 0, if $x = x^*$.
- b. $d^2f/dx^2 = 0$, if $x = x^*$.
- c. $x^* = 0$.
- d. $f(x^*) = 0$.
- e. All of the above.
- (11) If y is inversely proportional to x (that is, if y = c/x, where c is an unknown constant) then the elasticity of y with respect to x equals
- a. c.
- b. zero.
- c. one-half.
- d. one.
- e. minus one.
- f. cannot be determined from information given.
- (12) Consider the following functions. Which has constant elasticity?
- a. y = 7 + 3 x.
- b. y = 7 + (5/x).
- c. $y = \ln(3x)$.
- d. $y = \exp(2x)$.
- e. $y = 7 + 5x + (2/3) x^3$.
- f. $v = 7 x^{-3}$.
- (13) A straight line does *not* have constant
- a. slope.
- b. elasticity.
- c. It has neither constant slope nor constant elasticity.
- d. It has both constant slope and constant elasticity.

- (14) Suppose y denotes the quantity demanded of gasoline (in gallons) and x denotes the price of gasoline (in U.S. dollars). Consider the demand function y = f(x). The units of measure for the *derivative* of y with respect to x are
- a. gallons.
- b. dollars.
- c. gallons per dollar.
- d. The derivative is unit-free.

The next question refers to the following graph of a level curve, or contour, of the function $y = f(x_1,x_2)$.

- (15) As we move along this curve down and to the right, what remains unchanged?
- a. y.
- b. x₁.
- c. x₂.
- d. both x_1 , and x_2 .
- e. the marginal rate of substitution.
- f. All of the above remain unchanged.
- **II. SHORT ANSWER:** Please write your answers in the boxes on this question sheet. Use margins for scratch work.
- (1) [4 pts] Suppose the derivative of the function y = f(x) equals -2 at a particular value of x. Moreover, the elasticity of y with respect to x equals -0.5. Further suppose that x increases by 4 *percent*. [Hint: Some of this information is extraneous and not needed to answer this question.]
- a. Will y increase or decrease?
- b. By about how much?

percent

- (2) [4 pts] Consider the function $y = f(x_1,x_2)$. Suppose at a particular point, $\partial y/\partial x_1 = 0.2$, and $\partial y/\partial x_2 = 0.6$, and that the partial elasticities are $\varepsilon_1 = 0.5$ and $\varepsilon_2 = 1.2$. Further suppose that x_1 increases by 2 *units* and simultaneously x_2 increases by 5 *units*. [Hint: Some of this information is extraneous and not needed to answer this question.]
- a. Will y *increase* or *decrease*?
- b. By about how much?

units

(3) [4 pts] Total revenue equals price times quantity. Suppose pricoutput quantity decreases by 1 percent.	ce increases by 4 percent and
a. Will total revenue increase or decrease?	
b. By about how much?	percent
(4) [4 pts] Unit cost equals total cost divided by output quantity. Sincreases by 3 percent and total cost increases by 5 percent.	Suppose output quantity
a. Will unit cost <i>increase</i> or <i>decrease</i> ?	
b. By about how much?	percent
 (5) [8 pts] Consider the function y = f(x1,x2). Suppose at a partic ∂y/∂x2 = 2. First, suppose that x1 increases by 10 units but x2 does a. Will y increase or decrease? b. By about how much? 	± •
Now suppose that x_1 increases by 10 units but we want y to remark constant, we must change the value of x_2 . c. Must x_2 increase or decrease?	nin constant. To keep y
d. By about how much?	units
 (6) [4 pts] Consider the function y = f(x₁,x₂). Suppose at a partic ∂y/∂x₂ = 5. Now consider a graph of the level curve of this function and x₂ on the horizontal axis. a. Does the level curve of the function slope up or down at that point? b. Give the slope of the level curve at this point. 	-

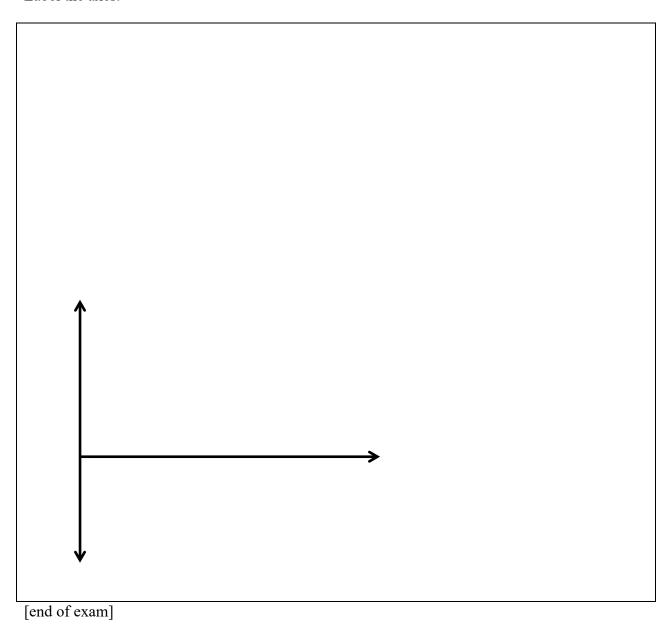
III. PROBLEMS: Please write your answers in the boxes on this question sheet. Show your work and circle your final answers.

(1) [O	ptimization: 8 pts] Consider the function $y = f(x) = -2x^2 + 20x + 3$.			
a.	a. Find an expression (in terms of x) for the derivative of y with respect to x (dy/dx).			
b.	Compute the value x* that maximizes this function.			
c.	For what range of values of x does this function slope up? For what range of values does it slope down?			
d.	Find the maximum value, y*, of the function itself.			

(2)	Partial	elasticities:	6 pts]	Suppose	$\mathbf{v} = 0$	$(x_1 - 3)^2$	$(x_2)^2$
•		,	L	• • • • • • • • • • • • • • • • • • • •	~ P J	~	,	(,

a. Find an expression for ε_1 , the partial elasticity of y with respect to x_1 . The variable y should *not* appear in your answer.

b. Find an expression for $\,\epsilon_2$, the partial elasticity of $\,y\,$ with respect to $\,x_2$. The variable $\,y\,$


should *not* appear in your answer.

strictly	IRS: 12 pts] Suppose $y = f(x_1,x_2) = (x_1 - 2)^3 (x_2 + 4)^5$. The arguments x_1 and x_2 are y positive.
a.	Find an expression for the partial derivative of y with respect to x ₁ .
b.	Find an expression for the partial derivative of y with respect to x_2 .
c.	Find an expression for the marginal rate of substitution of x_2 for x_1 (that is, the formula for the slope of the level curves of y, with x_1 on the vertical axis and x_2 on the horizontal axis). Simplify if possible.

(4) [M positiv	IRS: 12 pts] Suppose $y = f(x_1,x_2) = -2 x_1^{-1} - 3 x_2^{-1}$. The arguments x_1 and x_2 are strictly we.
a.	Find an expression for the partial derivative of y with respect to x_1 .
b.	Find an expression for the partial derivative of y with respect to x_2 .
c.	Find an expression for the marginal rate of substitution of x_2 for x_1 (that is, the formula for the slope of the level curves of y, with x_1 on the vertical axis and x_2 on the horizontal axis). Simplify if possible.

IV. CRITICAL THINKING: [4 pts] Answer *one* question below (your choice). Circle the question you are answering. Justify your answer and show your work.

- (1) Suppose x denotes a firm's output, which cannot be negative, and y denote's the firm's profit, which can be positive or negative. What non-negative value of x maximizes the profit function $y = f(x) = -3 x^2 2x 5$? What value of y does it yield? Justify your answer. Sketch the graph of y = f(x). Label the axes.
- (2) Suppose U = f(I,P), where U = utility or well-being, P = pollution, and I = income, where P and I are strictly positive. Further suppose $\partial U/\partial I$ is positive, but $\partial U/\partial P$ is negative. Do the level curves of f(I,P) slope up or down? Justify your answer. Sketch a typical level curve. Label the axes.

