EXAMINATION #1 ANSWER KEY "Mathematical Tools"

Version A

I. Multiple choice

(1)d. (2)c. (3)a. (4)a. (5)c. (6)d. (7)f. (8)c.(9)b. (10)b.

II. Short answer

- (1) a. increase b. 20 units, using derivative since change is given in units.
- b. 5 %, using elasticities since changes are given in percent. (2) a. increase
- b. 2 %, using approximation rule for products. (3) a. decrease
- a. increase **(4)** b. 3 %, using approximation rule for ratios.
- b. 12 units c. decrease d. 6 units. (5) a. increase
- b. -1.75. (6) a. down

III. Problems

- a. dy/dx = -2x+10. b. $x^* = 5$. (1)
 - c. Slopes up for x<5 because dy/dx is positive.

Slopes down for x>5 because dy/dx is negative.

d.
$$y^* = f(x^*) = f(5) = 10$$
.

(2) a.
$$\varepsilon_1 = 2$$
. b. $\varepsilon_2 = \frac{4x_2}{x_2 - 3}$

(3) a.
$$\frac{\partial y}{\partial x_1} = 7 x_1^{-2}$$
 b. $\frac{\partial y}{\partial x_2} = 5 x_2^{-2}$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{5x_1^2}{7x_2^2}$

(3) a.
$$\frac{\partial y}{\partial x_1} = 7 x_1^{-2}$$
 b. $\frac{\partial y}{\partial x_2} = 5 x_2^{-2}$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{5x_1^2}{7x_2^2}$.
(4) a. $\frac{\partial y}{\partial x_1} = 2(x_1 - 5)(x_2 - 4)^3$ b. $\frac{\partial y}{\partial x_2} = (x_1 - 5)^2 3(x_2 - 4)^2$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{3(x_1 - 5)}{2(x_2 - 4)}$.

IV. Critical thinking

Using the total derivative in elasticity form,

% chg in y =
$$\epsilon_1$$
 (% chg x_1) + ϵ_2 (% chg x_2)
= ϵ_1 (3%) + ϵ_2 (3%)
= (ϵ_1 + ϵ_2) (3%)
= (1) (3%) = 3%.

So y *increases* by about 3%.

Version B

I. Multiple choice

(1)f. (2)d. (3)c.(4)b. (5)d. (6)f. (7)b. (8)a. (9)b. (10)a.

II. Short answer

b. 1.5 %, using elasticity since change is given in percent. (1) a. increase

b. 14 units, using derivative since changes are given in units. a. decrease (2)

(3) a. increase b. 3 %, using approximation rule for products.

b. 4 %, using approximation rule for ratios. **(4)** a. increase

b. 20 units a. increase c. decrease d. 10 units. (5)

a. down b. -3. (6)

III. Problems

a. dy/dx = 2x-20. b. $x^* = 10$. **(1)**

c. Slopes up for x>10 because dy/dx is positive.

Slopes down for x<10 because dy/dx is negative.

d.
$$y^* = f(x^*) = f(10) = -75$$
.

(2) a.
$$\varepsilon_2 = \frac{2x_1}{x_1 + 3}$$
. b. $\varepsilon_1 = 3$

(2) a.
$$\varepsilon_2 = \frac{2x_1}{x_1 + 3}$$
. b. $\varepsilon_1 = 3$
(3) a. $\frac{\partial y}{\partial x_1} = 3 x_1^{-3/2}$ b. $\frac{\partial y}{\partial x_2} = x_2^{-3/2}$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{1}{3} \left(\frac{x_1}{x_2}\right)^{3/2}$.

(4) a.
$$\frac{\partial y}{\partial x_1} = 3(x_1 + 2)^3(x_2 + 1)^4$$
 b. $\frac{\partial y}{\partial x_2} = (x_1 + 2)^34(x_2 + 1)^3$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{4(x_1 + 2)}{3(x_2 + 1)}$.

IV. Critical thinking

Using the total derivative in elasticity form,

% chg in y =
$$\varepsilon_1$$
 (% chg x_1) + ε_2 (% chg x_2)
= ε_1 (5%) + ε_2 (5%)
= ($\varepsilon_1 + \varepsilon_2$) (5%)
= (0) (5%) = 0%.

So y remains constant (no increase or decrease).

Version C

I. Multiple choice

(1)b. (2)a. (3)e. (4)a. (5)d. (6)b. (7)d. (8)d. (9)d. (10)d.

II. Short answer

b. 15 units, using derivative since change is given in units. (1) a. increase

b. 0.8 %, using elasticities since changes are given in percent. (2) a. increase

(3) a. decrease b. 2 %, using approximation rule for products.

b. 3 %, using approximation rule for ratios. **(4)** a. decrease

b. 18 units a. increase c. decrease d. 9 units. (5)

a. down b. -5/3. (6)

III. Problems

a. dy/dx = -20x+60. b. $x^* = 3$. **(1)**

c. Slopes up for x<3 because dy/dx is positive.

Slopes down for x>3 because dy/dx is negative.

d.
$$y^* = f(x^*) = f(3) = 80$$
.

(2) a.
$$\varepsilon_1 = 3$$
. b. $\varepsilon_2 = \frac{2x_2}{x_2+4}$

(2) a.
$$\varepsilon_1 = 3$$
. b. $\varepsilon_2 = \frac{2x_2}{x_2 + 4}$
(3) a. $\frac{\partial y}{\partial x_1} = x_1^{-1/2}$ b. $\frac{\partial y}{\partial x_2} = 2 x_2^{-1/2}$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = 2 \left(\frac{x_1}{x_2}\right)^{1/2}$.

(4) a.
$$\frac{\partial y}{\partial x_1} = 5(x_1 - 3)^4(x_2 - 6)^2$$
 b. $\frac{\partial y}{\partial x_2} = (x_1 - 3)^5 2(x_2 - 6)$ c. $MRS = \frac{\partial y/\partial x_2}{\partial y/\partial x_1} = \frac{2(x_1 - 3)}{5(x_2 - 6)}$.

IV. Critical thinking

Using the total derivative in elasticity form,

% chg in y =
$$\epsilon_1$$
 (% chg x_1) + ϵ_2 (% chg x_2)
= ϵ_1 (2%) + ϵ_2 (2%)
= (ϵ_1 + ϵ_2) (2%)
= (-1) (2%) = -2%.

So y decreases by about 2%.

[end of answer key]