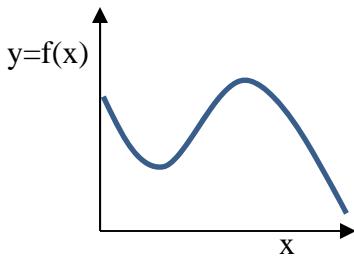


EXAMINATION #1 VERSION A
“Mathematical Tools”
September 8, 2015


INSTRUCTIONS: This exam is closed-book, closed-notes. Calculators, mobile phones, and wireless devices are NOT permitted. Point values for each question are noted in brackets.

I. MULTIPLE CHOICE: Circle the one best answer to each question. Use margins for scratch work. [3 pts each—30 pts total]

(1) Which of the following functions has constant slope (or derivative)?

- a. $y = 4 x^{-3}$.
- b. $y = \ln(3x)$.
- c. $y = \exp(2x)$.
- d. $y = 2 + 3x$.
- e. $y = 7 + (6/x)$.
- f. $y = 2 + 6x + (1/3)x^3$.

The next question refers to the following graph of $y = f(x)$.

(2) In this graph, the derivative of y with respect to x (that is, df/dx) equals zero at

- a. no point on the graph.
- b. one point on the graph.
- c. two points on the graph.
- d. three points on the graph.
- e. four points on the graph.
- f. more than four points on the graph.

(3) Consider the following functions.

Which has constant elasticity?

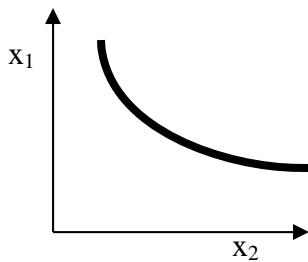
- a. $y = 4 x^{-3}$.
- b. $y = \ln(3x)$.
- c. $y = \exp(2x)$.
- d. $y = 2 + 3x$.
- e. $y = 7 + (6/x)$.
- f. $y = 2 + 6x + (1/3)x^3$.

(4) A straight line has constant

- a. slope.
- b. elasticity.
- c. both of the above.
- d. none of the above.

(5) Suppose y denotes the quantity demanded of gasoline (in gallons) and x denotes the price of gasoline (in U.S. dollars). Consider the demand function $y = f(x)$. The units of measure for the *derivative* of y with respect to x are

- a. gallons.
- b. dollars.
- c. gallons per dollar.
- d. The derivative is unit-free.


(6) Which of the following functions has constant partial *derivatives* ($\partial y / \partial x_1$ and $\partial y / \partial x_2$)?

- a. $y = 8(x_1 - 4)^3(x_2 - 7)^2$.
- b. $y = 12 + 3x_1^{-1} + 2x_2^{-1}$.
- c. $y = 25 + 4x_1^{1/2} + 6x_2^{1/2}$.
- d. $y = 16 + 6x_1 + 7x_2$.
- e. $y = 5x_1 + 9x_2 + 4(x_1x_2)^{1/2}$.
- f. $y = 14x_1^3x_2^2$.

(7) Which of the following functions has constant partial *elasticities* (ε_1 and ε_2)?

- a. $y = 8(x_1 - 4)^3(x_2 - 7)^2$.
- b. $y = 12 + 3x_1^{-1} + 2x_2^{-1}$.
- c. $y = 25 + 4x_1^{1/2} + 6x_2^{1/2}$.
- d. $y = 16 + 6x_1 + 7x_2$.
- e. $y = 5x_1 + 9x_2 + 4(x_1x_2)^{1/2}$.
- f. $y = 14x_1^3x_2^2$.

The next three questions refer to the following graph of a level curve, or contour, of the function $y = f(x_1, x_2)$.

(8) By definition, all points along the curve in this graph have identical values of

- a. x_1 .
- b. x_2 .
- c. y .
- d. the marginal rate of substitution.
- e. all of the above.
- f. none of the above.

(9) According to this graph, if x_1 increases and y is to be held constant, then x_2 must

- a. increase.
- b. decrease.
- c. remain constant.
- d. be set equal to zero.
- e. cannot be determined from the information given.

(10) Along this level curve, as we move down and to the right, the marginal rate of substitution of x_2 for x_1 (that is, the $|\text{slope}|$ of the level curve with x_1 on the vertical axis and x_2 on the horizontal axis) is

- a. increasing.
- b. diminishing.
- c. infinite.
- d. constant and equal to zero.
- e. constant and equal to one.

II. SHORT ANSWER: Please write your answers in the boxes on this question sheet. Use margins for scratch work.

(1) [4 pts] Suppose the derivative of the function $y = f(x)$ equals 2 at a particular value of x . Moreover, the elasticity of y with respect to x equals 0.3. Further suppose that x increases by 10 *units*. [Hint: Some of this information is extraneous and not needed to answer this question.]

a. Will y *increase or decrease*?

units

b. By about how much?

(2) [4 pts] Consider the function $y = f(x_1, x_2)$. Suppose at a particular point, $\partial y / \partial x_1 = 5$, and $\partial y / \partial x_2 = 2$, and that the partial elasticities are $\varepsilon_1 = 0.8$ and $\varepsilon_2 = 0.5$. Further suppose that x_1 increases by 5 *percent* and simultaneously x_2 increases by 2 *percent*. [Hint: Some of this information is extraneous and not needed to answer this question.]

a. Will y *increase or decrease*?

percent

b. By about how much?

(3) [4 pts] Revenue equals price times quantity sold. Suppose price increases by 3 percent and the quantity sold decreases by 5 percent.

a. Will revenue *increase or decrease*?

%

b. By about how much?

(4) [4 pts] The average product of labor equals total output divided by total labor input. Suppose total output in the automobile sector increases by 5 percent and total labor input increases by 2 percent.

a. Will the average product *increase or decrease*?

%

b. By about how much?

(5) [8 pts] Consider the function $y = f(x_1, x_2)$. Suppose at a particular point, $\partial y / \partial x_1 = 3$, and $\partial y / \partial x_2 = 2$. First, suppose that x_1 increases by 4 units but x_2 does not change.

a. Will y increase or decrease?

b. By about how much?

units

Now suppose that x_1 increases by 4 units but we want y to remain constant. To keep y constant, we must change the value of x_2 .

c. Must x_2 increase or decrease?

d. By about how much?

units

(6) [4 pts] Consider the function $y = f(x_1, x_2)$. Suppose at a particular point, $\partial y / \partial x_1 = 4$, and $\partial y / \partial x_2 = 7$. Now consider a graph of the level curve of this function, with x_1 on the vertical axis and x_2 on the horizontal axis.

a. Does the level curve of the function slope *up* or *down* at that point?

b. Give the slope of the level curve at this point.

III. PROBLEMS: Please write your answers in the boxes on this question sheet. Show your work and circle your final answers.

(1) [Optimization: 8 pts] Consider the function $y = f(x) = -x^2 + 10x - 15$.

- a. Find an expression (in terms of x) for the derivative of y with respect to x (dy/dx).

- b. Compute the value x^* that maximizes this function.

- c. For what range of values of x does this function slope up? For what range of values does it slope down?

- d. Find the maximum value, y^* , of the function itself.

(2) [Partial elasticities: 6 pts] Suppose $y = x_1^2 (x_2 - 3)^4$.

- a. Find an expression for ε_1 , the partial elasticity of y with respect to x_1 . The variable y should *not* appear in your answer.

- b. Find an expression for ε_2 , the partial elasticity of y with respect to x_2 . The variable y should *not* appear in your answer.

(3) [MRS: 12 pts] Suppose $y = f(x_1, x_2) = -7x_1^{-1} - 5x_2^{-1}$. The arguments x_1 and x_2 are strictly positive.

- a. Find an expression for the partial derivative of y with respect to x_1 .

- b. Find an expression for the partial derivative of y with respect to x_2 .

- c. Find an expression for the marginal rate of substitution of x_2 for x_1 (that is, the formula for the $|\text{slope}|$ of the level curves of y , with x_1 on the vertical axis and x_2 on the horizontal axis). Simplify if possible.

(4) [MRS: 12 pts] Suppose $y = f(x_1, x_2) = (x_1 - 5)^2 (x_2 - 4)^3$. The arguments x_1 and x_2 are strictly positive.

- a. Find an expression for the partial derivative of y with respect to x_1 .

- b. Find an expression for the partial derivative of y with respect to x_2 .

- c. Find an expression for the marginal rate of substitution of x_2 for x_1 (that is, the formula for the $|\text{slope}|$ of the level curves of y , with x_1 on the vertical axis and x_2 on the horizontal axis). Simplify if possible.

IV. CRITICAL THINKING: [4 pts]

Suppose $y = f(x_1, x_2)$. Let ε_1 denote the partial elasticity of y with respect to x_1 and ε_2 denote the partial elasticity of y with respect to x_2 . Suppose $\varepsilon_1 + \varepsilon_2 = 1$. If x_1 and x_2 both simultaneously increase by 3 percent, does y *increase* or *decrease*? By how about much? Justify your answer.

[end of exam]