Intermediate Microeconomic Analysis (Econ 173) Drake University, Fall 2011 William M. Boal

EXAMINATION #2 ANSWER KEY

Version A

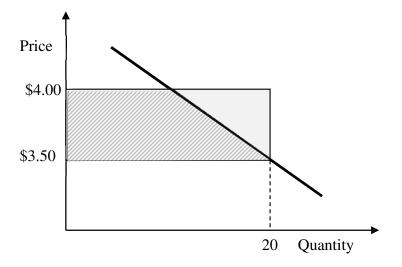
I. MULTIPLE CHOICE

(1)d. (2)c. (3)c. (4)b. (5)d.

II. SHORT ANSWER

(1)	a. inelastic	b. decrease	c. 4%	d. increase	e. 1%.	
(2)	a. luxury or s	uperior good	b. increase	c. 5%	d. increase	e. 1%.
(3)	a3/5	b8	c. \$40	d2 hambur	gers	
	e6 hamburgers.					
(4)	a. \$5	b. 8 units	c. \$15	d. 3 units	e. 2 units	f. 3 units.
(5)	a. L=135	b. P=120	c. $F = \sqrt{135 \cdot 120} = 127.3$.			
(6)	a. better off	b. \$100	c. \$90 .			

III. PROBLEMS


(1) a. -5/2 = -2.5 b. straight line with intercepts at music=20 and other=8.

(2) a.
$$180 = 4 q_1 + 3 q_2$$
 b. $MRSC = \frac{3q_1}{2q_2}$ c. $q_1^* = 18, q_2^* = 36$.

- (3) a. MRSC = $\frac{q_1 10}{q_2}$ b. $q_1^* = \frac{l}{2p_1} + 5$ $q_2^* = \frac{l}{2p_2} \frac{5p_1}{p_2}$.
- (4) a. own-price elasticity of demand = -1. Justification: $\varepsilon = \frac{\partial q_{1}}{\partial p_{1}} \frac{p_{1}}{q_{1}} = \frac{5(-1)p_{1}^{-2}p_{2}^{0.1}I p_{1}}{5p_{1}^{-1}p_{2}^{0.1}I} = -1$, Or give the rule of thumb: "This is a power function, so the exponent of p_{1} is the ownprice elasticity of demand." b. 5 (a p_{1})⁻¹ (a p_{2})^{0.1} (aI) = a⁻¹ a^{0.1} a 5 $p_{1}^{-1} p_{2}^{0.1} I = a^{0.1} 5 p_{1}^{-1} p_{2}^{0.1} I$. Since the a factors do not cancel out, this function is NOT homogeneous of degree zero in income and prices.

IV. CRITICAL THINKING

 Anna will prefer an *increase in price* from \$3.50 to \$4.
Justification with demand curve diagram: The data given in the problem imply that Anna's demand curve for gasoline passes through the point (\$3.50, 20 gallons), as shown in the graph below.

If the price of gasoline rises from \$3.50 to \$4.00, Anna's loss of consumer surplus is the area of the shaded trapezoid. We cannot evaluate this area because we do not know how much gasoline Anna would demand at a price of \$4.00. However, she would surely demand less than 20 gallons (by the Law of Demand). So the area of the trapezoid must be less than the area of the rectangle, which is \$10. Since the loss of consumer surplus would be less than \$10, Anna would prefer an increase of \$0.50 in the price of gasoline to a decrease of \$10 in her monthly income.

(2) All three of Brian's COL indices increase at the *same rate*. *Justification with algebraic proof:*

By definition, Brian's Laspeyres COL index $= \frac{p_b^{new}q_b^{old} + p_f^{new}q_f^{old}}{p_b^{old}q_b^{old} + p_f^{old}q_f^{old}} \times 100$. By definition, Brian's Paasche COL index $= \frac{p_b^{new}q_b^{new} + p_f^{new}q_f^{new}}{p_b^{old}q_b^{new} + p_f^{old}q_f^{new}} \times 100$. But we are given that $2 q_b^{old} = q_b^{new}$ and $2 q_f^{old} = q_f^{new}$. Substituting, Brian's Paasche COL index becomes $= \frac{p_b^{new}2q_b^{old} + p_f^{new}2q_f^{old}}{p_b^{old}2q_b^{old} + p_f^{new}q_f^{old}} \times 100$ $= \frac{2}{2} \cdot \frac{p_b^{new}q_b^{old} + p_f^{new}q_f^{old}}{p_b^{old}q_b^{old} + p_f^{old}q_f^{old}} \times 100$ $= \frac{p_b^{new}q_b^{old} + p_f^{new}q_f^{old}}{p_b^{old}q_b^{old} + p_f^{old}q_f^{old}} \times 100$. Therefore Brian's Paasche and Laspeyres COL indices are identical. By definition, Brian's Fisher COL index $= \sqrt{Laspeyres \times Paasche}$.

Fisher = $\sqrt{Laspeyres \times Paasche} = \sqrt{Laspeyres^2} = Laspeyres$. Therefore, if $2 q_b^{old} = q_b^{new}$ and $2 q_f^{old} = q_f^{new}$, then all three COL indexes increase at the same rate.

Version **B**

I. MULTIPLE CHOICE

(1)a. (2)d. (3)a. (4)e. (5)b.

II. SHORT ANSWER

(1)	a. inelastic	b. increase	c. 2%	d. decrease	e. 3%.	
(2)	a. necessary g	good	b. increase	c. 2%	d. decrease	e. 6%.
(3)	a3/10	b6	c. \$40	d1 h	amburgers	
	e5 hamburg	gers.				
(4)	a. \$12	b. 2 units	c. \$6	d. 7 units	e. 4 units	f. 1 units.
(5)	a. L=116	b. P=110	c. F = $\sqrt{116}$ ·	$\overline{110} = 113.0$.		
(6)	a. worse off	b. \$160	c. \$200 .			

III. PROBLEMS

- (1) a. -3/2 = -1.5 b. straight line with intercepts at sodapop=15 and other=10.
- (2) a. $300 = 2 q_1 + 8 q_2$ b. $MRSC = \frac{2q_1}{q_2}$ c. $q_1^* = 50, q_2^* = 25$.
- (3) a. MRSC = $\frac{q_1+5}{q_2}$ b. $q_1^* = \frac{l}{2p_1} \frac{5}{2}$ $q_2^* = \frac{l}{2p_2} + \frac{5p_1}{2p_2}$.

(4) a. own-price elasticity of demand = -0.9. Justification: $\varepsilon = \frac{\partial q_{1*}}{\partial p_1} \frac{p_1}{q_1} = \frac{3(-0.9)p_1^{-1.9}p_2^{-0.2}I^{1.1}p_1}{3p_1^{-0.9}p_2^{-0.2}I^{1.1}} = -0.9$, Or give the rule of thumb: "This is a power function, so the exponent of p_1 is the ownprice elasticity of demand." b. 3 (a p_1)^{-0.9} (a p_2)^{-0.2} (aI)^{1.1} = a^{-0.9} a^{-0.2} a^{1.1} 3 $p_1^{-0.9} p_2^{-0.2} I^{1.1} = a^0 3 p_1^{-0.9} p_2^{-0.2} I^{1.1}$. Since the a factors cancel out, this function IS homogeneous of degree zero in income and prices.

IV. CRITICAL THINKING: Same as Version A.

Version C

I. MULTIPLE CHOICE

(1)c. (2)b. (3)f. (4)a. (5)c.

II. SHORT ANSWER

(1)	a. elastic	b. increase	c. 7%	d. increase	e. 2%.	
(2)	a. necessary	good	b. decrease	c. 6%	d. increase	e. 2%.
(3)	a3/5	b10	c. \$50	d3 hambur	gers	
	e7 hambu	rgers.				
(4)	a. \$5	b. 8 units	c. \$15	d. 2 units	e. 2 units	f. 4 units.

(5)	a. L=120	b. P=110	c. $F = \sqrt{120 \cdot 110} = 114.9$.
(6)	a. better off	b. \$140	c. \$130 .

III. PROBLEMS

- (1) a. -5/4 = -1.25 b. straight line with intercepts at pizzas=25 and other=20.
- (2) a. $150 = 6 q_1 + 2 q_2$ b. $MRSC = \frac{2q_1}{3q_2}$ c. $q_1^* = 15, q_2^* = 30$.
- (3) a. MRSC = $\frac{q_1}{q_2 3}$ b. $q_1^* = \frac{l}{2p_1} \frac{3p_2}{2p_1}$ $q_2^* = \frac{l}{2p_2} + \frac{3}{2}$.
- (4) a. own-price elasticity of demand = -1.5. Justification: $\varepsilon = \frac{\partial q_{1}}{\partial p_{1}} \frac{p_{1}}{q_{1}} = \frac{3(-1.5)p_{1}^{-2.5}p_{2}^{0.1}I^{1.2}}{3p_{1}^{-1.5}p_{2}^{0.1}I^{1.2}} = -1.5$, Or give the rule of thumb: "This is a power function, so the exponent of p_{1} is the own-price elasticity of demand." b. 3 (a p_{1})^{-1.5} (a p_{2})^{0.1} (aI)^{1.2} = a^{-1.5} a^{0.1} a^{1.2} 3 $p_{1}^{-1.5} p_{2}^{0.1} I^{1.2} = a^{-0.2} 3 p_{1}^{-1.5} p_{2}^{0.1} I^{1.2}$. Since the a factors do not cancel out, this function is NOT homogeneous of degree zero in income and prices.

IV. CRITICAL THINKING: Same as Version A.

[end of answer key]